External Reactor Vessel Cooling Evaluation for Severe Accident Mitigation in NPP Krško


  • Mario Mihalina
  • Srđan Špalj
  • Bruno Glaser




in-vessel corium retention, external reactor vessel cooling, severe accident management


The In-Vessel corium Retention (IVR) through the External Reactor Vessel Cooling (ERVC) is mean for maintaining the reactor vessel integrity during a severe accident, by cooling and retaining the molten material inside the reactor vessel. By doing this, significant portion of severe accident negative phenomena connected with reactor vessel failure could be avoided. In this paper, analysis of NPP Krško applicability for IVR strategy was performed. It includes overview of performed plant related analysis with emphasis on wet cavity modification, plant’s site specific walk downs, new applicable probabilistic and deterministic analysis, evaluation of new possibilities for ERVC strategy implementation regarding plant’s post-Fukushima improvements and adequacy with plant’s procedures for severe accident mitigation. Conclusion is that NPP Krško could perform in-vessel core retention by applying external reactor vessel cooling strategy with reasonable confidence in success. Per probabilistic and deterministic analysis, time window for successful ERVC strategy performance for most dominating plant damage state scenarios is 2.5 hours, when onset of core damage is observed. This action should be performed early after transition to Severe Accident Management Guidance’s (SAMG). For loss of all AC power scenario, containment flooding could be initiated before onset of core damage within related emergency procedure. To perform external reactor vessel cooling, reactor water storage tank gravity drain with addition of alternate water is needed to be injected into the containment. ERVC strategy will positively interfere with other severe accident strategies. There are no negative effects due to ERVC performance. New flooding level will not threaten equipment and instrumentation needed for long term SAMGs performance and eventually diluted containment sump borated water inventory will not cause return to criticality during eventual recirculation phase due to the lost core geometry.  


Download data is not yet available.