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EDITORIAL
First article in this issue: “Empirical Assessment of Wind Power’s 
Capacity Credit: A European Case Study” examines the effec-
tive capacity credit of onshore wind power plants in selected 
European countries for the years 2019 and 2024. In addition to 
analyzing observed capacity credit in individual countries and 
across the continent, it explores hypothetical scenarios with 
alternative spatial distributions of wind capacity. Results show 
that optimized distributions yield higher intrinsic capacity credit 
compared to the actual configurations. This suggests that, under 
current electricity consumption profiles, coordinated allocation 
strategies could meaningfully improve the performance of wind 
generation.
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Empirical Assessment of Wind Power’s Capacity 
Credit: A European Case Study

Dubravko Sabolić, Igor Ivanković

Summary — This paper presents an empirical analysis of the in-
trinsic capacity credit of onshore wind power across twelve European 
countries, based on hourly measured data for 2019 and 2024. Capaci-
ty credit was calculated as a function of acceptable default risk, under 
the simplifying assumption that wind power alone must satisfy total 
demand, serving as a limiting-case benchmark for adequacy assess-
ment. The results show a wide range of outcomes across individual 
countries and highlight the effects of spatial aggregation, where the 
combined regional system performs better than its constituents. A 
nonlinear model was fitted to describe the relationship between ca-
pacity credit and risk probability. Additionally, several hypothetical 
spatial distributions of installed capacity were evaluated using statis-
tical criteria, illustrating how coordination could affect adequacy out-
comes. The analysis was based exclusively on observed data, without 
additional modeling assumptions, and the proposed method offers a 
transparent, generalizable framework for empirical adequacy bench-
marking across generation types and planning contexts.

Keywords — Wind power, capacity credit, system adequacy, spatial 
distribution, empirical modeling

I. Introduction

Integration of renewable energy sources (RES) into modern 
power systems poses significant challenges related to system 
adequacy, short-term variability, and market integration. A vari-

ety of methodologies have been proposed to quantify the reliability 
contribution, or capacity credit, of wind and solar power.

Capacity credit, also known as capacity value, is defined as 
the contribution that a new generator makes to system adequacy 
without compromising overall reliability. In the context of RES 
investments, it reflects the share of system load that can be reli-
ably met by new RES generation, accounting for its variability and 
alignment with system stress periods. It is typically expressed as a 
percentage. For example, if a wind plant has a capacity credit of 
10%, only one-tenth of its installed capacity can be counted toward 
meeting the system’s peak load with a high degree of reliability, 
typically around 99% to 99.9% of the time. This reliability depends 
on the criteria set by the TSO, often defined by the Loss of Load 
Expectation (LOLE) or Loss of Load Probability (LOLP) [1], [2].

Ensslin et al. [1] observe that onshore wind capacity credits in 
various systems ranged from as high as 40% of installed capac-
ity in regions with low wind penetration and high capacity fac-
tors during peak load times to as low as 5% in regions with high 
wind penetration or low capacity factors. Jorgenson et al. [3] con-
ducted a comprehensive evaluation of wind capacity credit across 
the Western United States using probabilistic reliability methods. 
Their findings show that the capacity credit of land-based wind 
varies significantly by region and weather year, ranging from 5% 
to 30%, and averages 16%. The study also demonstrates that ca-
pacity credit tends to increase with the capacity factor, but that 
correlation with times of system stress is an even more decisive 
factor—particularly for offshore wind, which shows substantially 
higher capacity credit due to better alignment with periods of high 
demand and system risk. Ssengonzi et al. [4] present an approach 
to estimating the capacity credit of RES, particularly wind and so-
lar, as their penetration levels increase across regional power grids 
in the contiguous United States, concluding that the capacity cred-
its for all RES technologies analyzed decrease with penetration 
rate, with 5% as a limiting order of magnitude at the regional level.

Relying solely on wind power without supporting technolo-
gies would require a significant degree of overbuilding to ensure 
system adequacy, due to its variability and limited firm capac-
ity. In practice, the need for such excessive overbuilding can be 
significantly reduced even in a hypothetical fossil-free system 
through the integration of complementary assets such as flexible 
hydropower, energy storage systems, demand-side management, 
and potentially hydrogen-fired generation. These technologies can 
mitigate the effects of intermittency and improve the firm capacity 
contribution of wind, thus lowering the effective overbuild factor 
required to meet reliability targets.

The statistical properties of generation intermittency in a large 
wind power system in the USA, along with the resulting demand 
for regulation reserves, were thoroughly analyzed in [5] and later 
extended in [6] using a European dataset. Interestingly, both analy-
ses identified the same statistical distribution governing short-term 
production variations, despite being based on data from fundamen-
tally different systems and geographical contexts.

These statistical findings illustrate how physical characteris- 
tics of wind generation affect system-level reliability metrics, 
forming the foundation for capacity credit analysis.

(Corresponding author: Dubravko Sabolić)
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II. The Data
The source of all data used in this study is the ENTSO-E Trans-

parency Platform (https://transparency.entsoe.eu/). For this prelim-
inary analysis, we selected hourly measured aggregate generation 
data from onshore wind power plants in twelve European coun-
tries, as well as the total hourly electricity consumption recorded in 
those same countries.

Table I lists the countries included in the study along with ba-
sic descriptive statistics for the wind power production time series 
utilized. Regarding the temporal dimension, two separate calendar 
years were selected for analysis: 2019. and 2024.

The intermediate years were intentionally omitted due to sig-
nificant societal and market disruptions during that period. Specifi-
cally, 2020 and 2021 were m arked by the COVID-19 pandemic 
and its well-known economic effects on electricity demand and 
industrial output. In its final quarter, 2021 also saw the onset of 
severe electricity price disruptions that ended over a decade of 
relative stability [7]. The situation further escalated in early 2022 
with the onset of the war in Ukraine, leading to increased crisis 
levels and price volatility across energy markets. A gradual stabili-
zation in both the energy sector and the broader economy followed 
throughout 2023. Including these atypical years would have con-
founded the baseline analysis aimed at comparability across rela-
tively stable conditions. While we acknowledge the importance of 
learning from periods of disruption, our objective here is to provide 
a reference scenario based on operational norms. A broader tempo-
ral scope will be considered in future research. 

As such, the years chosen for this study represent a relevant 
and balanced framing: 2019 as the last “normal” year before major 
disruptions, and 2024 as the first year of renewed market stability 
under the new circumstances.

In addition to basic descriptive statistics, we computed the pair-
wise coefficients of determination (R2) b etween all wind power 
production vectors to assess the degree of linear correlation among 
the observed countries. These values reflect how well the variation 
in one country’s wind output can be linearly explained by another. 
The resulting matrix of R2 values is shown in Table II. The up-
per triangle of the matrix contains R2 values for the year 2019 (in 
green), and the lower triangle corresponds to 2024, making the ta-
ble asymmetric. The color intensity increases with the magnitude 
of R2. It can be observed that moderately strong correlations in 
wind power production exist only in a few country pairs (indicated 
by more intense coloration and higher R2 values), and that these 
correlations are consistently present in both analyzed years.

The following country codes are used throughout the analy- 
sis: AT – Austria, BG – Bulgaria, CRO – Croatia, CZ – Czech 
Republic, F – France, D+L – Germany and Luxembourg, GR – 
Greece, PL – Poland, PT – Portugal, RO – Romania, ES – Spain, 
and SUM – the aggregated total across all listed countries.

As of January 2024, the population (in millions) of these coun-
tries was: AT – 9.16, BG – 6.45, CRO – 3.86, CZ – 10.9, F – 48.6, 
D+L – 84.2, GR – 10.6, PL – 36.6, PT – 10.6, RO – 19.1, ES – 
48.6; with a combined total of 278 million [8].

III. Methodology
The primary objective of this study is to determine the effec-

tive capacity credit of onshore wind power plants in selected Eu-
ropean countries over the analyzed years. To this end, hourly wind 
generation data were normalized with respect to the total installed 
capacity recorded at the end of each respective year. Similarly, the 
aggregate hourly wind generation for the entire group of twelve 
countries was normalized by the sum of installed capacities in all of 
them. While this simplification introduces some error — since in-
stalled capacity evolves over the year — the relative yearly growth 
is relatively small, and thus the approximation remains reasonable. 
The assumption of exclusive wind supply is not intended to re-
flect practical system planning but rather to define an upper-bound 
reference case that enables empirical comparison of adequacy 
outcomes across different spatial and temporal configurations. 
System load profiles, expressed as hourly electricity consumption, 
were normalized by the annual peak hourly demand. The intrinsic 
capacity credit — here referring strictly to onshore wind — was 
calculated using the following procedure: the time series of nor-
malized wind generation was multiplied by a scalar factor F , and 
then the normalized system demand series was subtracted from the 
result. The percentage of hours r in which the resulting series was 
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demand for regulation reserves, were thoroughly analyzed
in [5] and later extended in [6] using a European dataset.
Interestingly, both analyses identified the same statistical dis-
tribution governing short-term production variations, despite
being based on data from fundamentally different systems and
geographical contexts.

These statistical findings illustrate how physical characteris-
tics of wind generation affect system-level reliability metrics,
forming the foundation for capacity credit analysis.

II. THE DATA

The source of all data used in this study is the ENTSO-
E Transparency Platform (https://transparency.entsoe.eu/). For
this preliminary analysis, we selected hourly measured aggre-
gate generation data from onshore wind power plants in twelve
European countries, as well as the total hourly electricity
consumption recorded in those same countries.

Table I lists the countries included in the study along with
basic descriptive statistics for the wind power production
time series utilized. Regarding the temporal dimension, two
separate calendar years were selected for analysis: 2019 and
2024.

The intermediate years were intentionally omitted due to
significant societal and market disruptions during that period.
Specifically, 2020 and 2021 were marked by the COVID-19
pandemic and its well-known economic effects on electricity
demand and industrial output. In addition, the war in Ukraine,
which began in early 2022, triggered widespread energy
market volatility and large-scale systemic responses. In its
final quarter, 2021 also saw the onset of severe electricity
price disruptions that ended over a decade of relative stability
[7]. Including these atypical years would have confounded
the baseline analysis aimed at comparability across relatively
stable conditions. While we acknowledge the importance of
learning from periods of disruption, our objective here is to
provide a reference scenario based on operational norms. A
broader temporal scope will be considered in future research.

The situation further escalated in early 2022 with the onset
of the war in Ukraine, leading to increased crisis levels and
price volatility across energy markets. A gradual stabilization
in both the energy sector and the broader economy followed
throughout 2023.

As such, the years chosen for this study represent a relevant
and balanced framing: 2019 as the last “normal” year before
major disruptions, and 2024 as the first year of renewed market
stability under the new circumstances.

In addition to basic descriptive statistics, we computed
the pairwise coefficients of determination (R2) between all
wind power production vectors to assess the degree of linear
correlation among the observed countries. These values reflect
how well the variation in one country’s wind output can be
linearly explained by another. The resulting matrix of R2

values is shown in Table II. The upper triangle of the matrix
contains R2 values for the year 2019 (in green), and the lower
triangle corresponds to 2024, making the table asymmetric.
The color intensity increases with the magnitude of R2. It
can be observed that moderately strong correlations in wind

TABLE I
DESCRIPTIVE STATISTICS OF THE TIME SERIES USED IN THIS STUDY.

TABLE II
MATRIX OF DETERMINATION COEFFICIENTS R2 : 2019 (UPPER TRIANGLE,

GREEN) AND 2024 (LOWER TRIANGLE, RED).

power production exist only in a few country pairs (indicated
by more intense coloration and higher R2 values), and that
these correlations are consistently present in both analyzed
years.

The following country codes are used throughout the analy-
sis: AT – Austria, BG – Bulgaria, CRO – Croatia, CZ – Czech
Republic, F – France, D+L – Germany and Luxembourg, GR
– Greece, PL – Poland, PT – Portugal, RO – Romania, ES
– Spain, and SUM – the aggregated total across all listed
countries.

As of January 2024, the population (in millions) of these
countries was: AT – 9.16, BG – 6.45, CRO – 3.86, CZ – 10.9,
F – 48.6, D+L – 84.2, GR – 10.6, PL – 36.6, PT – 10.6, RO
– 19.1, ES – 48.6; with a combined total of 278 million [8].

III. METHODOLOGY

The primary objective of this study is to determine the
effective capacity credit of onshore wind power plants in
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negative was then determined. The capacity credit C, correspond-
ing to a default risk of r, is defined as:

The empirically observed capacity credit values — interpret-
able as quantiles of a stochastic distribution at a given level of risk 
— were analyzed as a function of the default risk r. It was found 
that the relationship between C and r exhibits a high degree of cor-
relation with the inverse distribution function of short-term pro-
duction fluctuations, as previously established in our earlier works 
[5], [6].

Specifically, we find that the capacity credit can be very accu-
rately modeled as a composite function of the form:

  C(r) = a · rb + c · r + ε  (2)

where a, b, and c are empirically fitted parameters, and ε is the 
residual error term capturing the difference between the observed 
and modeled values of capacity credit. Both C(r) and r are ex-
pressed as percentages. Despite its nonlinearity, the model remains 
interpretable and tractable for practical use. In addition to directly 
analyzing the observed capacity credit in individual countries and 
across the entire contiguous geographic region — spanning the full 
width of the European continent — this study also investigates hy-
pothetical scenarios in which the spatial distribution of installed 
wind capacity differs from the actual configuration. These scenar-
ios preserve the measured temporal characteristics of normalized 
production and consumption while varying the relative distribution 
of installed capacity.

Several alternative spatial configurations were developed, each 
optimized to improve general indicators of variability—such as 
minimizing the overall variance of wind generation or maximiz-
ing the ratio of total production to its variability. These simulations 
illustrate the potential benefits of a more coordinated approach to 
the geographic allocation of wind capacity. The findings indicate 
that such hypothetical redistribution strategies could yield a higher 
intrinsic capacity credit compared to the currently observed con-
figuration. However, as the analysis is based on time series from 
only two individual years, the conclusions remain indicative rather 
than definitive, highlighting the need for broader temporal cover-
age in future research.

It is important to emphasize that the intrinsic capacity credit an-
alyzed above was derived through direct empirical observation — 
essentially “watching nature” — based on measured onshore wind 
production and total electricity consumption. As such, it inherently 
captures the full spectrum of stochastic events that occurred dur-
ing the two years studied, including unpredictable production and 
demand fluctuations, forced outages, plant shutdowns, localized 
demand drops, and similar disturbances, which makes it highly rel-
evant within the temporal and geographical scope of the analysis.

Evidently, this type of analysis can be easily extended to in-
clude any combination of generation technologies, in any real or 
simulated configuration, provided that comparable temporal and 
operational data are available.

IV. The Results

A. Actual Spatial Distribution Across the Countries
Figure 1 shows the relationship between capacity credit and the 

probability of failing to meet instantaneous demand for the year 
2019. The dots represent empirically determined values, while the 
lines correspond to the best-fit regression curves based on (2), ob-
tained by minimizing the total squared error. Figure 2 presents the 
same type of analysis for the year 2024. Table III summarizes the 
fitted regression coefficients and their corresponding R2 values for 
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selected European countries over the analyzed years. To this
end, hourly wind generation data were normalized with respect
to the total installed capacity recorded at the end of each
respective year. Similarly, the aggregate hourly wind gener-
ation for the entire group of twelve countries was normalized
by the sum of installed capacities in all of them. While this
simplification introduces some error—since installed capacity
evolves over the year—the relative yearly growth is relatively
small, and thus the approximation remains reasonable. The
assumption of exclusive wind supply is not intended to reflect
practical system planning but rather to define an upper-bound
reference case that enables empirical comparison of adequacy
outcomes across different spatial and temporal configurations.

System load profiles, expressed as hourly electricity con-
sumption, were normalized by the annual peak hourly demand.

The intrinsic capacity credit—here referring strictly to on-
shore wind—was calculated using the following procedure: the
time series of normalized wind generation was multiplied by a
scalar factor F , and then the normalized system demand series
was subtracted from the result. The percentage of hours r in
which the resulting series was negative was then determined.
The capacity credit C, corresponding to a default risk of r, is
defined as:

C =
100

F
(1)

The empirically observed capacity credit val-
ues—interpretable as quantiles of a stochastic distribution at
a given level of risk—were analyzed as a function of the
default risk r. It was found that the relationship between C
and r exhibits a high degree of correlation with the inverse
distribution function of short-term production fluctuations, as
previously established in our earlier works [5], [6].

Specifically, we find that the capacity credit can be very
accurately modeled as a composite function of the form:

C(r) = a · rb + c · r + ε (2)

where a, b, and c are empirically fitted parameters, and ε
is the residual error term capturing the difference between the
observed and modeled values of capacity credit. Both C(r)
and r are expressed as percentages. Despite its nonlinearity,
the model remains interpretable and tractable for practical use.

In addition to directly analyzing the observed capacity
credit in individual countries and across the entire contiguous
geographic region—spanning the full width of the European
continent—this study also investigates hypothetical scenarios
in which the spatial distribution of installed wind capacity
differs from the actual configuration. These scenarios preserve
the measured temporal characteristics of normalized produc-
tion and consumption while varying the relative distribution
of installed capacity.

Several alternative spatial configurations were developed,
each optimized to improve general indicators of variabil-
ity—such as minimizing the overall variance of wind gen-
eration or maximizing the ratio of total production to its
variability. These simulations illustrate the potential benefits
of a more coordinated approach to the geographic allocation

Fig. 1. Capacity credit vs. default probability for 2019.

of wind capacity. The findings indicate that such hypothetical
redistribution strategies could yield a higher intrinsic capacity
credit compared to the currently observed configuration. How-
ever, as the analysis is based on time series from only two
individual years, the conclusions remain indicative rather than
definitive, highlighting the need for broader temporal coverage
in future research.

It is important to emphasize that the intrinsic capacity
credit analyzed above was derived through direct empirical
observation—essentially “watching nature”—based on mea-
sured onshore wind production and total electricity consump-
tion. As such, it inherently captures the full spectrum of
stochastic events that occurred during the two years studied,
including unpredictable production and demand fluctuations,
forced outages, plant shutdowns, localized demand drops, and
similar disturbances, which makes it highly relevant within the
temporal and geographical scope of the analysis.

Evidently, this type of analysis can be easily extended
to include any combination of generation technologies, in
any real or simulated configuration, provided that comparable
temporal and operational data are available.

IV. THE RESULTS

A. Actual Spatial Distribution Across the Countries

Figure 1 shows the relationship between capacity credit and
the probability of failing to meet instantaneous demand for the
year 2019. The dots represent empirically determined values,
while the lines correspond to the best-fit regression curves
based on (2), obtained by minimizing the total squared error.

Figure 2 presents the same type of analysis for the year
2024. Table III summarizes the fitted regression coefficients
and their corresponding R2 values for each case. Residual
errors between modeled and observed capacity credit val-
ues were generally small—typically below 1.5 percentage
points—confirming a close fit between the nonlinear model
and the empirical data.

In both analyzed years, two distinct groups of countries can
be observed: RO, BG, AT, and CRO on one side, and the
remaining countries on the other. The four mentioned coun-
tries, at least within the years considered, exhibit insufficient

3HOW TO USE THE IEEETRAN LATEX TEMPLATES JOURNAL OF ENERGY

selected European countries over the analyzed years. To this
end, hourly wind generation data were normalized with respect
to the total installed capacity recorded at the end of each
respective year. Similarly, the aggregate hourly wind gener-
ation for the entire group of twelve countries was normalized
by the sum of installed capacities in all of them. While this
simplification introduces some error—since installed capacity
evolves over the year—the relative yearly growth is relatively
small, and thus the approximation remains reasonable. The
assumption of exclusive wind supply is not intended to reflect
practical system planning but rather to define an upper-bound
reference case that enables empirical comparison of adequacy
outcomes across different spatial and temporal configurations.

System load profiles, expressed as hourly electricity con-
sumption, were normalized by the annual peak hourly demand.

The intrinsic capacity credit—here referring strictly to on-
shore wind—was calculated using the following procedure: the
time series of normalized wind generation was multiplied by a
scalar factor F , and then the normalized system demand series
was subtracted from the result. The percentage of hours r in
which the resulting series was negative was then determined.
The capacity credit C, corresponding to a default risk of r, is
defined as:

C =
100

F
(1)

The empirically observed capacity credit val-
ues—interpretable as quantiles of a stochastic distribution at
a given level of risk—were analyzed as a function of the
default risk r. It was found that the relationship between C
and r exhibits a high degree of correlation with the inverse
distribution function of short-term production fluctuations, as
previously established in our earlier works [5], [6].

Specifically, we find that the capacity credit can be very
accurately modeled as a composite function of the form:

C(r) = a · rb + c · r + ε (2)

where a, b, and c are empirically fitted parameters, and ε
is the residual error term capturing the difference between the
observed and modeled values of capacity credit. Both C(r)
and r are expressed as percentages. Despite its nonlinearity,
the model remains interpretable and tractable for practical use.

In addition to directly analyzing the observed capacity
credit in individual countries and across the entire contiguous
geographic region—spanning the full width of the European
continent—this study also investigates hypothetical scenarios
in which the spatial distribution of installed wind capacity
differs from the actual configuration. These scenarios preserve
the measured temporal characteristics of normalized produc-
tion and consumption while varying the relative distribution
of installed capacity.

Several alternative spatial configurations were developed,
each optimized to improve general indicators of variabil-
ity—such as minimizing the overall variance of wind gen-
eration or maximizing the ratio of total production to its
variability. These simulations illustrate the potential benefits
of a more coordinated approach to the geographic allocation

Fig. 1. Capacity credit vs. default probability for 2019.

of wind capacity. The findings indicate that such hypothetical
redistribution strategies could yield a higher intrinsic capacity
credit compared to the currently observed configuration. How-
ever, as the analysis is based on time series from only two
individual years, the conclusions remain indicative rather than
definitive, highlighting the need for broader temporal coverage
in future research.

It is important to emphasize that the intrinsic capacity
credit analyzed above was derived through direct empirical
observation—essentially “watching nature”—based on mea-
sured onshore wind production and total electricity consump-
tion. As such, it inherently captures the full spectrum of
stochastic events that occurred during the two years studied,
including unpredictable production and demand fluctuations,
forced outages, plant shutdowns, localized demand drops, and
similar disturbances, which makes it highly relevant within the
temporal and geographical scope of the analysis.

Evidently, this type of analysis can be easily extended
to include any combination of generation technologies, in
any real or simulated configuration, provided that comparable
temporal and operational data are available.

IV. THE RESULTS

A. Actual Spatial Distribution Across the Countries

Figure 1 shows the relationship between capacity credit and
the probability of failing to meet instantaneous demand for the
year 2019. The dots represent empirically determined values,
while the lines correspond to the best-fit regression curves
based on (2), obtained by minimizing the total squared error.

Figure 2 presents the same type of analysis for the year
2024. Table III summarizes the fitted regression coefficients
and their corresponding R2 values for each case. Residual
errors between modeled and observed capacity credit val-
ues were generally small—typically below 1.5 percentage
points—confirming a close fit between the nonlinear model
and the empirical data.

In both analyzed years, two distinct groups of countries can
be observed: RO, BG, AT, and CRO on one side, and the
remaining countries on the other. The four mentioned coun-
tries, at least within the years considered, exhibit insufficient
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Fig. 1. Capacity credit vs. default probability for 2019.

Fig. 2. Capacity credit vs. default probability for 2024.

Fig. 3. Capacity credit vs. default probability under multiple hypothetical 
optimized spatial distributions for 2019.
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Fig. 2. Capacity credit vs. default probability for 2024.

TABLE III
FITTED REGRESSION PARAMETERS AND R2 COEFFICIENTS FOR EACH

COUNTRY AND YEAR.

intrinsic capacity credit from wind generation—meaning that
reasonable values of capacity credit, on the order of 5 to
10 percent, only occur under relatively unfavorable default
risk thresholds. In other words, relying on wind generation
as the only renewable generation technology in them would
be very costly in terms of additional resources, such as storage
facilities, network upgrades, etc., needed to ensure system
adequacy and stabilize the grid.

It is also worth noting that in both years, the SUM curve
exhibited the most favorable trade-off between probability
of default and capacity credit. Specifically, a 10% capacity

Fig. 3. Capacity credit vs. default probability under multiple hypothetical
optimized spatial distributions for 2019.

credit level was attainable with a default probability of just
2–3%, which, while higher than typical reliability targets used
by system operators, provides a useful reference point for
comparing adequacy outcomes across configurations.

Given the limited scope of this study, these preliminary
findings should be revisited and verified using a considerably
broader dataset.

B. Hypothetical Geographic Allocations Yielding Greater Ca-
pacity Credit

This naturally raises the question of whether, through hypo-
thetical policies involving quotas for the installation of wind
power (or other types of renewable energy), it would be
possible—now or in the future—to achieve a higher overall
level of system adequacy, that is, a higher capacity credit for
the same level of supply risk.

To investigate this, we used the normalized time series of
wind generation from all participating countries and deter-
mined the optimal relative distribution of installed capacity
based on several criteria. These included: minimizing the
standard deviation of total production (denoted σ); minimizing
the standard deviation of net production—defined as total
generation minus load—(denoted σ-n); minimizing the maxi-
mum absolute hourly change in total production (denoted ∆);
maximizing the ratio between total annual energy production
and the standard deviation (denoted µ/σ); and maximizing the
ratio between total annual energy production and the variance
(denoted µ/σ2). These symbols are used to distinguish the
respective scenarios in Figures 3 and 4.

In all scenarios, the optimized spatial distributions yielded
better outcomes than the actual installed capacity distribution.
This suggests that, at least in principle and under current
electricity consumption profiles, the implementation of coordi-
nated allocation policies could lead to a meaningful improve-
ment in the overall intrinsic capacity credit of this generation
technology.

On the other hand, we must emphasize that coordinating
such policies at a multinational level across this scale would
likely prove extremely challenging, if not infeasible.
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each case. Residual errors between modeled and observed capacity 
credit values were generally small — typically below 1.5 percent-
age points — confirming a close fit between the nonlinear model 
and the empirical data.

In both analyzed years, two distinct groups of countries can 
be observed: RO, BG, AT, and CRO on one side, and the remain-
ing countries on the other. The four mentioned countries, at least 
within the years considered, exhibit insufficient intrinsic capacity 
credit from wind generation — meaning that reasonable values of 
capacity credit, on the order of 5 to 10 percent, only occur under 
relatively unfavorable default risk thresholds. In other words, rely-
ing on wind generation as the only renewable generation technol-
ogy in them would be very costly in terms of additional resources, 
such as storage facilities, network upgrades, etc., needed to ensure 
system adequacy and stabilize the grid.

It is also worth noting that in both years, the SUM curve exhib-
ited the most favorable trade-off between probability of default and 
capacity credit. Specifically, a 10% capacity credit level was attain-
able with a default probability of just 2–3%, which, while higher 
than typical reliability targets used by system operators, provides 
a useful reference point for comparing adequacy outcomes across 
configurations.

Given the limited scope of this study, these preliminary find-
ings should be revisited and verified using a considerably broader 
dataset.

B. Hypothetical Geographic Allocations 
Yielding Greater Capacity Credit

This naturally raises the question of whether, through hypo- 
thetical policies involving quotas for the installation of wind power 
(or other types of renewable energy), it would be possible — now 
or in the future—to achieve a higher overall level of system ad-
equacy, that is, a higher capacity credit for the same level of supply 
risk.

To investigate this, we used the normalized time series of wind 
generation from all participating countries and determined the op-
timal relative distribution of installed capacity based on several 
criteria. These included: minimizing the standard deviation of total 
production (denoted σ); minimizing the standard deviation of net 
production — defined as total generation minus load — (denoted 
σ-n); minimizing the maximum absolute hourly change in total 
production (denoted ∆); maximizing the ratio between total annual 
energy production and the standard deviation (denoted µ/σ); and 
maximizing the ratio between total annual energy production and 
the variance (denoted µ/σ2). These symbols are used to distinguish 
the respective scenarios in Figures 3 and 4.

In all scenarios, the optimized spatial distributions yielded bet-
ter outcomes than the actual installed capacity distribution. This 
suggests that, at least in principle and under current electricity 
consumption profiles, the implementation of coordinated alloca-
tion policies could lead to a meaningful improvement in the overall 
intrinsic capacity credit of this generation technology.

On the other hand, we must emphasize that coordinating such 
policies at a multinational level across this scale would likely prove 
extremely challenging, if not infeasible.

Fig. 4. Capacity credit vs. default probability under multiple hypothetical 
optimized spatial distributions for 2024.
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Fig. 4. Capacity credit vs. default probability under multiple hypothetical
optimized spatial distributions for 2024.

TABLE IV
OPTIMAL HYPOTHETICAL VS. OBSERVED SPATIAL DISTRIBUTIONS OF

INSTALLED CAPACITY ACROSS COUNTRIES, BASED ON SELECTED
OPTIMIZATION CRITERIA.

Figures 3 and 4 illustrate the relationship between capacity
credit and default probability under the optimized spatial
distributions for 2019 and 2024, respectively. Each curve
represents one of the optimization scenarios introduced earlier.
In all cases, the curves lie to the left of the reference curve for
the actual spatial distribution (SUM), confirming that improved
adequacy outcomes can, in principle, be achieved through
optimized geographic allocation.

Table IV provides a comparative overview of the optimal
relative distribution of installed capacity by country for both
analyzed years, along with a comparison to the observed
(actual) distribution. For the sake of brevity, the table includes
only the results of optimizations according to two specific
criteria: the minimum peak absolute hourly change in total
production (denoted by the symbol ∆) and the ratio of total
annual production to its standard deviation (denoted as µ/σ).

These results should be interpreted in the context of each
country’s relative size. Population, as referenced in Section II,
serves as a reasonable proxy for national scale, though ad-
ditional factors—such as the land area available for specific
types of power generation—may also be relevant.

For example, in the case of Croatia—which, apart from

Luxembourg, is the smallest of the countries included—it
would be practically impossible to allocate 17.80% of the total
wind capacity, as suggested by the optimization result under
the ∆ scenario in Table IV for the year 2019. Since the total
installed capacity across all countries now exceeds 140 GW,
such a share would imply more than 25 GW of wind power
within Croatia alone, which is unrealistic given the country’s
limited territorial area.

Consequently, more advanced future research should incor-
porate upper bounds on installable capacity per country into
the optimization problem, taking into account territorial, regu-
latory, and political constraints. Other system-level limitations,
such as the impact of high wind penetration on reduced system
inertia and frequency stability, may also play a role and merit
further consideration in future studies.

V. DISCUSSION AND FUTURE WORK

The analysis presented in this paper provides a preliminary
empirical view of the intrinsic capacity credit of wind power
across twelve European countries, highlighting several aspects
that may warrant further investigation.

One limitation of the study is the relatively narrow temporal
scope, covering only the years 2019 and 2024. These years
were deliberately selected to represent conditions before and
after a period of significant systemic disruptions. However,
expanding the time horizon could help assess the robustness
of the observed patterns and improve generalizability. On the
other hand, the geographic scope of the study, which includes a
diverse cross-section of southern, central, and southeastern Eu-
rope with a combined population of 278 million, may provide
a representative basis for regional system-level considerations,
although it can be broadened, too.

A perhaps noteworthy observation is the similarity in
functional form between the dependence of capacity credit
on default probability and that of the so-called regulation
multiplier—a proxy for the demand for secondary regulation
reserves—on default probability, as identified in our earlier
studies [5], [6]. Although the variables involved are not the
same, and the underlying mechanisms differ, the resemblance
in empirical structure invites further examination. At present,
the reason for this alignment remains unclear.

Another aspect observed in both analyzed years is that the
aggregated capacity credit across all countries consistently
exceeded the values obtained for any individual country. This
is broadly consistent with the idea that geographic diversifica-
tion helps mitigate the variability of renewable generation and
supports system adequacy.

Results from the hypothetical spatial allocation scenarios
suggest that an alternative geographic distribution of installed
capacity could lead to improved adequacy outcomes. Although
the methodology shows what could, in principle, be achieved,
it is unlikely that such optimizations could be implemented
in practice. Wind power deployment is largely driven by
decentralized and private investment decisions, and coordi-
nated planning across national boundaries poses considerable
institutional and political challenges.

One strength of this approach is that it relies solely on
measured data. As such, the observed outcomes reflect the
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Table IV

Optimal Hypothetical Vs. Observed Spatial Distributions 
of Installed Capacity Across Countries, Based on Selected 

Optimization Criteria.

Figures 3 and 4 illustrate the relationship between capacity 
credit and default probability under the optimized spatial distribu-
tions for 2019 and 2024, respectively. Each curve represents one 
of the optimization scenarios introduced earlier. In all cases, the 
curves lie to the left of the reference curve for the actual spatial 
distribution (SUM), confirming that improved adequacy outcomes 
can, in principle, be achieved through optimized geographic 
allocation.

Table IV provides a comparative overview of the optimal rela-
tive distribution of installed capacity by country for both analyzed 
years, along with a comparison to the observed (actual) distribu-
tion. For the sake of brevity, the table includes only the results of 
optimizations according to two specific criteria: the minimum peak 
absolute hourly change in total production (denoted by the symbol 
∆) and the ratio of total annual production to its standard deviation 
(denoted as µ/σ). These results should be interpreted in the context 
of each country’s relative size. Population, as referenced in Section 
II, serves as a reasonable proxy for national scale, though addi-
tional factors—such as the land area available for specific types of 
power generation—may also be relevant.

For example, in the case of Croatia — which, apart from Lux-
embourg, is the smallest of the countries included — it would be 
practically impossible to allocate 17.80% of the total wind capac-
ity, as suggested by the optimization result under the ∆ scenario in 
Table IV for the year 2019. Since the total installed capacity across 
all countries now exceeds 140 GW, such a share would imply more 
than 25 GW of wind power within Croatia alone, which is unreal-
istic given the country’s limited territorial area.

Consequently, more advanced future research should incor- 
porate upper bounds on installable capacity per country into the 
optimization problem, taking into account territorial, regulatory, 
and political constraints. Other system-level limitations, such as 
the impact of high wind penetration on reduced system inertia and 
frequency stability, may also play a role and merit further consid-
eration in future studies.

V. Discussion And Future Work
The analysis presented in this paper provides a preliminary em-

pirical view of the intrinsic capacity credit of wind power across 
twelve European countries, highlighting several aspects that may 
warrant further investigation.

One limitation of the study is the relatively narrow temporal 

scope, covering only the years 2019 and 2024. These years were 
deliberately selected to represent conditions before and after a 
period of significant systemic disruptions. However, expanding 
the time horizon could help assess the robustness of the observed 
patterns and improve generalizability. On the other hand, the geo-
graphic scope of the study, which includes a diverse cross-section 
of southern, central, and southeastern Europe with a combined 
population of 278 million, may provide a representative basis for 
regional system-level considerations, although it can be broad-
ened, too.

A perhaps noteworthy observation is the similarity in function-
al form between the dependence of capacity credit on default prob-
ability and that of the so-called regulation multiplier—a proxy for 
the demand for secondary regulation reserves—on default proba-
bility, as identified in our earlier studies [5], [6]. Although the vari-
ables involved are not the same, and the underlying mechanisms 
differ, the resemblance in empirical structure invites further exami-
nation. At present, the reason for this alignment remains unclear.

Another aspect observed in both analyzed years is that the ag-
gregated capacity credit across all countries consistently exceeded 
the values obtained for any individual country. This is broadly 
consistent with the idea that geographic diversification helps miti-
gate the variability of renewable generation and supports system 
adequacy.

Results from the hypothetical spatial allocation scenarios sug-
gest that an alternative geographic distribution of installed capacity 
could lead to improved adequacy outcomes. Although the method-
ology shows what could, in principle, be achieved, it is unlikely that 
such optimizations could be implemented in practice. Wind power 
deployment is largely driven by decentralized and private invest-
ment decisions, and coordinated planning across national bounda-
ries poses considerable institutional and political challenges.

One strength of this approach is that it relies solely on meas-
ured data. As such, the observed outcomes reflect theactual vari-
ability and characteristics of the power system during the period in 
question, including both planned and unplanned events. Within the 
limits of data resolution, accuracy, and scope, the method captures 
realistic conditions without additional modeling assumptions.

Furthermore, the same approach could be extended to other 
types of generation, or to study marginal effects when additional 
capacity is introduced or removed from an existing system. These 
directions may be useful for future research, particularly in the con-
text of mixed technology portfolios or systems undergoing transi-
tions toward higher shares of renewable energy.

VI. Conclusions
This study explored the intrinsic capacity credit of wind pow-

er across a set of twelve European countries, based on measured 
hourly data for the years 2019 and 2024. The analysis was con-
ducted under the assumption that wind generation would be the 
sole source of supply, allowing for a direct assessment of how reli-
ably it could meet demand without additional system support.

The results showed significant variation in capacity credit 
values among countries, with consistently higher values obtained 
when production was aggregated across the entire region. This is 
consistent with the notion that spatial diversification can help miti-
gate the intermittency of wind generation.

A nonlinear regression model was fitted to describe the rela-
tionship between capacity credit and default probability. While the 
model provided a good empirical fit, i ts similarity to previously 
observed structures in reserve-related studies remains unexplained 
and may be a subject of future investigation.
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Fig. 4. Capacity credit vs. default probability under multiple hypothetical
optimized spatial distributions for 2024.
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multiplier—a proxy for the demand for secondary regulation
reserves—on default probability, as identified in our earlier
studies [5], [6]. Although the variables involved are not the
same, and the underlying mechanisms differ, the resemblance
in empirical structure invites further examination. At present,
the reason for this alignment remains unclear.

Another aspect observed in both analyzed years is that the
aggregated capacity credit across all countries consistently
exceeded the values obtained for any individual country. This
is broadly consistent with the idea that geographic diversifica-
tion helps mitigate the variability of renewable generation and
supports system adequacy.

Results from the hypothetical spatial allocation scenarios
suggest that an alternative geographic distribution of installed
capacity could lead to improved adequacy outcomes. Although
the methodology shows what could, in principle, be achieved,
it is unlikely that such optimizations could be implemented
in practice. Wind power deployment is largely driven by
decentralized and private investment decisions, and coordi-
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Additionally, hypothetical spatial redistributions of installed 
capacity were evaluated using several statistical optimization crite-
ria. These scenarios produced improved adequacy outcomes com-
pared to the actual capacity distribution, although their practical 
implementation would likely face considerable challenges.

This provides a foundation for potential extensions, such as ana-
lyzing mixed technology portfolios or assessing marginal contribu-
tions of additional capacity under different system configurations.
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