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EDITORIAL
First article in this issue: “Empirical Assessment of Wind Power’s 
Capacity Credit: A European Case Study” examines the effec-
tive capacity credit of onshore wind power plants in selected 
European countries for the years 2019 and 2024. In addition to 
analyzing observed capacity credit in individual countries and 
across the continent, it explores hypothetical scenarios with 
alternative spatial distributions of wind capacity. Results show 
that optimized distributions yield higher intrinsic capacity credit 
compared to the actual configurations. This suggests that, under 
current electricity consumption profiles, coordinated allocation 
strategies could meaningfully improve the performance of wind 
generation.

The second paper „Arc Flash Calculation for 110/20 kV HV/
MV Substation“ presents an arc flash calculation for a 110/20 
kV substation, based on the revised IEEE 1584:2018 standard, 
which replaces the 2002 version. The study focuses on medium-
voltage switchgear compartments, with the highest risk identi-
fied in the connection compartments where the cable termina-
tions are located. The results show that the incident energy is 
above the threshold of 1.2 cal/cm² and at least PPE Category 1 
is required, while additional safety measures such as pressure 
relief ducts and arc-resistant designs may reduce the labelling 
requirements. The paper emphasises the importance of compli-
ance with IEEE 1584:2018 and NFPA 70E:2024 standards, pre-
ventative maintenance, and appropriate training of personnel to 
mitigate arc flash hazards and ensure worker safety.

The article »Accurate Photovoltaic Power Forecasting in 5G 
Networks: A Novel Neural Network Approach« presents an Im-
proved Firefly Algorithm-Back Propagation (IFA-BP) neural net-
work for forecasting PV power in 5G base stations. By combin-
ing Circle chaos mapping and nonlinear perturbation, the model 
improves global search and convergence. The grey correlation 
analysis selects key inputs such as solar radiation, wind speed, 
and temperature. This hybrid approach avoids local minima and 
ensures reliable forecasts under varying weather. Experimental 
results show strong performance, with a MAPE of 4.79% (sunny) 
and 12.20% (cloudy), and an R² > 0.97. The model supports ac-
curate, weather-adapted energy forecasting for sustainable 5G 
networks.

The article “Model-Based Comparison of Nuclear and Renew-
able Energy Based Strategies for Slovenia” provides a compre-
hensive analysis of Slovenia’s energy transition strategies, com-
paring nuclear and renewable energy-based approaches. Using 
a zero-dimensional energy system model, the study evaluates 
key metrics such as grid stability, carbon intensity, land use, and 
import/export dependency under two scenarios: one prioritizing 
nuclear power and the other focusing on renewables. The find-
ings highlight nuclear power’s role in ensuring stable baseload 
generation, minimizing fluctuations, and reducing reliance on 
extensive storage or exports. In contrast, renewable-only strat-
egies introduce significant variability, requiring costly balancing 
measures. The study underscores the importance of integrat-
ing nuclear energy into Slovenia’s decarbonization efforts while 
raising critical questions about the feasibility of renewable-only 
policies. This work offers valuable insights for policymakers and 
stakeholders navigating the complexities of sustainable energy 
planning.
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Empirical Assessment of Wind Power’s Capacity 
Credit: A European Case Study

Dubravko Sabolić, Igor Ivanković

Summary — This paper presents an empirical analysis of the in-
trinsic capacity credit of onshore wind power across twelve European 
countries, based on hourly measured data for 2019 and 2024. Capaci-
ty credit was calculated as a function of acceptable default risk, under 
the simplifying assumption that wind power alone must satisfy total 
demand, serving as a limiting-case benchmark for adequacy assess-
ment. The results show a wide range of outcomes across individual 
countries and highlight the effects of spatial aggregation, where the 
combined regional system performs better than its constituents. A 
nonlinear model was fitted to describe the relationship between ca-
pacity credit and risk probability. Additionally, several hypothetical 
spatial distributions of installed capacity were evaluated using statis-
tical criteria, illustrating how coordination could affect adequacy out-
comes. The analysis was based exclusively on observed data, without 
additional modeling assumptions, and the proposed method offers a 
transparent, generalizable framework for empirical adequacy bench-
marking across generation types and planning contexts.

Keywords — Wind power, capacity credit, system adequacy, spatial 
distribution, empirical modeling

I. Introduction

Integration of renewable energy sources (RES) into modern 
power systems poses significant challenges related to system 
adequacy, short-term variability, and market integration. A vari-

ety of methodologies have been proposed to quantify the reliability 
contribution, or capacity credit, of wind and solar power.

Capacity credit, also known as capacity value, is defined as 
the contribution that a new generator makes to system adequacy 
without compromising overall reliability. In the context of RES 
investments, it reflects the share of system load that can be reli-
ably met by new RES generation, accounting for its variability and 
alignment with system stress periods. It is typically expressed as a 
percentage. For example, if a wind plant has a capacity credit of 
10%, only one-tenth of its installed capacity can be counted toward 
meeting the system’s peak load with a high degree of reliability, 
typically around 99% to 99.9% of the time. This reliability depends 
on the criteria set by the TSO, often defined by the Loss of Load 
Expectation (LOLE) or Loss of Load Probability (LOLP) [1], [2].

Ensslin et al. [1] observe that onshore wind capacity credits in 
various systems ranged from as high as 40% of installed capac-
ity in regions with low wind penetration and high capacity fac-
tors during peak load times to as low as 5% in regions with high 
wind penetration or low capacity factors. Jorgenson et al. [3] con-
ducted a comprehensive evaluation of wind capacity credit across 
the Western United States using probabilistic reliability methods. 
Their findings show that the capacity credit of land-based wind 
varies significantly by region and weather year, ranging from 5% 
to 30%, and averages 16%. The study also demonstrates that ca-
pacity credit tends to increase with the capacity factor, but that 
correlation with times of system stress is an even more decisive 
factor—particularly for offshore wind, which shows substantially 
higher capacity credit due to better alignment with periods of high 
demand and system risk. Ssengonzi et al. [4] present an approach 
to estimating the capacity credit of RES, particularly wind and so-
lar, as their penetration levels increase across regional power grids 
in the contiguous United States, concluding that the capacity cred-
its for all RES technologies analyzed decrease with penetration 
rate, with 5% as a limiting order of magnitude at the regional level.

Relying solely on wind power without supporting technolo-
gies would require a significant degree of overbuilding to ensure 
system adequacy, due to its variability and limited firm capac-
ity. In practice, the need for such excessive overbuilding can be 
significantly reduced even in a hypothetical fossil-free system 
through the integration of complementary assets such as flexible 
hydropower, energy storage systems, demand-side management, 
and potentially hydrogen-fired generation. These technologies can 
mitigate the effects of intermittency and improve the firm capacity 
contribution of wind, thus lowering the effective overbuild factor 
required to meet reliability targets.

The statistical properties of generation intermittency in a large 
wind power system in the USA, along with the resulting demand 
for regulation reserves, were thoroughly analyzed in [5] and later 
extended in [6] using a European dataset. Interestingly, both analy-
ses identified the same statistical distribution governing short-term 
production variations, despite being based on data from fundamen-
tally different systems and geographical contexts.

These statistical findings illustrate how physical characteris- 
tics of wind generation affect system-level reliability metrics, 
forming the foundation for capacity credit analysis.

(Corresponding author: Dubravko Sabolić)

Dubravko Sabolić and Igor Ivanković are with the Croatian Transmission 
System Operator (HOPS), Zagreb, Croatia (e-mails: dubravko.sabolic@hops.hr, 
igor.ivakovic@hops.hr)
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II. The Data
The source of all data used in this study is the ENTSO-E Trans-

parency Platform (https://transparency.entsoe.eu/). For this prelim-
inary analysis, we selected hourly measured aggregate generation 
data from onshore wind power plants in twelve European coun-
tries, as well as the total hourly electricity consumption recorded in 
those same countries.

Table I lists the countries included in the study along with ba-
sic descriptive statistics for the wind power production time series 
utilized. Regarding the temporal dimension, two separate calendar 
years were selected for analysis: 2019. and 2024.

The intermediate years were intentionally omitted due to sig-
nificant societal and market disruptions during that period. Spe-
cifically, 2020 and 2021 were marked by the COVID-19 pandemic 
and its well-known economic effects on electricity demand and 
industrial output. In its final quarter, 2021 also saw the onset of 
severe electricity price disruptions that ended over a decade of 
relative stability [7]. The situation further escalated in early 2022 
with the onset of the war in Ukraine, leading to increased crisis 
levels and price volatility across energy markets. A gradual stabili-
zation in both the energy sector and the broader economy followed 
throughout 2023. Including these atypical years would have con-
founded the baseline analysis aimed at comparability across rela-
tively stable conditions. While we acknowledge the importance of 
learning from periods of disruption, our objective here is to provide 
a reference scenario based on operational norms. A broader tempo-
ral scope will be considered in future research. 

As such, the years chosen for this study represent a relevant 
and balanced framing: 2019 as the last “normal” year before major 
disruptions, and 2024 as the first year of renewed market stability 
under the new circumstances.

In addition to basic descriptive statistics, we computed the 
pairwise coefficients of determination (R2) between all wind power 
production vectors to assess the degree of linear correlation among 
the observed countries. These values reflect how well the variation 
in one country’s wind output can be linearly explained by another. 
The resulting matrix of R2 values is shown in Table II. The up-
per triangle of the matrix contains R2 values for the year 2019 (in 
green), and the lower triangle corresponds to 2024, making the ta-
ble asymmetric. The color intensity increases with the magnitude 
of R2. It can be observed that moderately strong correlations in 
wind power production exist only in a few country pairs (indicated 
by more intense coloration and higher R2 values), and that these 
correlations are consistently present in both analyzed years.

The following country codes are used throughout the analy- 
sis: AT – Austria, BG – Bulgaria, CRO – Croatia, CZ – Czech 
Republic, F – France, D+L – Germany and Luxembourg, GR – 
Greece, PL – Poland, PT – Portugal, RO – Romania, ES – Spain, 
and SUM – the aggregated total across all listed countries.

As of January 2024, the population (in millions) of these coun-
tries was: AT – 9.16, BG – 6.45, CRO – 3.86, CZ – 10.9, F – 48.6, 
D+L – 84.2, GR – 10.6, PL – 36.6, PT – 10.6, RO – 19.1, ES – 
48.6; with a combined total of 278 million [8].

III. Methodology
The primary objective of this study is to determine the effec-

tive capacity credit of onshore wind power plants in selected Eu-
ropean countries over the analyzed years. To this end, hourly wind 
generation data were normalized with respect to the total installed 
capacity recorded at the end of each respective year. Similarly, the 
aggregate hourly wind generation for the entire group of twelve 
countries was normalized by the sum of installed capacities in all of 
them. While this simplification introduces some error — since in-
stalled capacity evolves over the year — the relative yearly growth 
is relatively small, and thus the approximation remains reasonable. 
The assumption of exclusive wind supply is not intended to re-
flect practical system planning but rather to define an upper-bound 
reference case that enables empirical comparison of adequacy 
outcomes across different spatial and temporal configurations. 
System load profiles, expressed as hourly electricity consumption, 
were normalized by the annual peak hourly demand. The intrinsic 
capacity credit — here referring strictly to onshore wind — was 
calculated using the following procedure: the time series of nor-
malized wind generation was multiplied by a scalar factor F , and 
then the normalized system demand series was subtracted from the 
result. The percentage of hours r in which the resulting series was 
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demand for regulation reserves, were thoroughly analyzed
in [5] and later extended in [6] using a European dataset.
Interestingly, both analyses identified the same statistical dis-
tribution governing short-term production variations, despite
being based on data from fundamentally different systems and
geographical contexts.

These statistical findings illustrate how physical characteris-
tics of wind generation affect system-level reliability metrics,
forming the foundation for capacity credit analysis.

II. THE DATA

The source of all data used in this study is the ENTSO-
E Transparency Platform (https://transparency.entsoe.eu/). For
this preliminary analysis, we selected hourly measured aggre-
gate generation data from onshore wind power plants in twelve
European countries, as well as the total hourly electricity
consumption recorded in those same countries.

Table I lists the countries included in the study along with
basic descriptive statistics for the wind power production
time series utilized. Regarding the temporal dimension, two
separate calendar years were selected for analysis: 2019 and
2024.

The intermediate years were intentionally omitted due to
significant societal and market disruptions during that period.
Specifically, 2020 and 2021 were marked by the COVID-19
pandemic and its well-known economic effects on electricity
demand and industrial output. In addition, the war in Ukraine,
which began in early 2022, triggered widespread energy
market volatility and large-scale systemic responses. In its
final quarter, 2021 also saw the onset of severe electricity
price disruptions that ended over a decade of relative stability
[7]. Including these atypical years would have confounded
the baseline analysis aimed at comparability across relatively
stable conditions. While we acknowledge the importance of
learning from periods of disruption, our objective here is to
provide a reference scenario based on operational norms. A
broader temporal scope will be considered in future research.

The situation further escalated in early 2022 with the onset
of the war in Ukraine, leading to increased crisis levels and
price volatility across energy markets. A gradual stabilization
in both the energy sector and the broader economy followed
throughout 2023.

As such, the years chosen for this study represent a relevant
and balanced framing: 2019 as the last “normal” year before
major disruptions, and 2024 as the first year of renewed market
stability under the new circumstances.

In addition to basic descriptive statistics, we computed
the pairwise coefficients of determination (R2) between all
wind power production vectors to assess the degree of linear
correlation among the observed countries. These values reflect
how well the variation in one country’s wind output can be
linearly explained by another. The resulting matrix of R2

values is shown in Table II. The upper triangle of the matrix
contains R2 values for the year 2019 (in green), and the lower
triangle corresponds to 2024, making the table asymmetric.
The color intensity increases with the magnitude of R2. It
can be observed that moderately strong correlations in wind

TABLE I
DESCRIPTIVE STATISTICS OF THE TIME SERIES USED IN THIS STUDY.

TABLE II
MATRIX OF DETERMINATION COEFFICIENTS R2 : 2019 (UPPER TRIANGLE,

GREEN) AND 2024 (LOWER TRIANGLE, RED).

power production exist only in a few country pairs (indicated
by more intense coloration and higher R2 values), and that
these correlations are consistently present in both analyzed
years.

The following country codes are used throughout the analy-
sis: AT – Austria, BG – Bulgaria, CRO – Croatia, CZ – Czech
Republic, F – France, D+L – Germany and Luxembourg, GR
– Greece, PL – Poland, PT – Portugal, RO – Romania, ES
– Spain, and SUM – the aggregated total across all listed
countries.

As of January 2024, the population (in millions) of these
countries was: AT – 9.16, BG – 6.45, CRO – 3.86, CZ – 10.9,
F – 48.6, D+L – 84.2, GR – 10.6, PL – 36.6, PT – 10.6, RO
– 19.1, ES – 48.6; with a combined total of 278 million [8].

III. METHODOLOGY

The primary objective of this study is to determine the
effective capacity credit of onshore wind power plants in
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negative was then determined. The capacity credit C, correspond-
ing to a default risk of r, is defined as:

The empirically observed capacity credit values — interpret-
able as quantiles of a stochastic distribution at a given level of risk 
— were analyzed as a function of the default risk r. It was found 
that the relationship between C and r exhibits a high degree of cor-
relation with the inverse distribution function of short-term pro-
duction fluctuations, as previously established in our earlier works 
[5], [6].

Specifically, we find that the capacity credit can be very accu-
rately modeled as a composite function of the form:

		  C(r) = a · rb + c · r + ε		  (2)

where a, b, and c are empirically fitted parameters, and ε is the 
residual error term capturing the difference between the observed 
and modeled values of capacity credit. Both C(r) and r are ex-
pressed as percentages. Despite its nonlinearity, the model remains 
interpretable and tractable for practical use. In addition to directly 
analyzing the observed capacity credit in individual countries and 
across the entire contiguous geographic region — spanning the full 
width of the European continent — this study also investigates hy-
pothetical scenarios in which the spatial distribution of installed 
wind capacity differs from the actual configuration. These scenar-
ios preserve the measured temporal characteristics of normalized 
production and consumption while varying the relative distribution 
of installed capacity.

Several alternative spatial configurations were developed, each 
optimized to improve general indicators of variability—such as 
minimizing the overall variance of wind generation or maximiz-
ing the ratio of total production to its variability. These simulations 
illustrate the potential benefits of a more coordinated approach to 
the geographic allocation of wind capacity. The findings indicate 
that such hypothetical redistribution strategies could yield a higher 
intrinsic capacity credit compared to the currently observed con-
figuration. However, as the analysis is based on time series from 
only two individual years, the conclusions remain indicative rather 
than definitive, highlighting the need for broader temporal cover-
age in future research.

It is important to emphasize that the intrinsic capacity credit an-
alyzed above was derived through direct empirical observation — 
essentially “watching nature” — based on measured onshore wind 
production and total electricity consumption. As such, it inherently 
captures the full spectrum of stochastic events that occurred dur-
ing the two years studied, including unpredictable production and 
demand fluctuations, forced outages, plant shutdowns, localized 
demand drops, and similar disturbances, which makes it highly rel-
evant within the temporal and geographical scope of the analysis.

Evidently, this type of analysis can be easily extended to in-
clude any combination of generation technologies, in any real or 
simulated configuration, provided that comparable temporal and 
operational data are available.

IV. The Results

A. Actual Spatial Distribution Across the 
Countries

Figure 1 shows the relationship between capacity credit and the 
probability of failing to meet instantaneous demand for the year 
2019. The dots represent empirically determined values, while the 
lines correspond to the best-fit regression curves based on (2), ob-
tained by minimizing the total squared error. Figure 2 presents the 
same type of analysis for the year 2024. Table III summarizes the 
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selected European countries over the analyzed years. To this
end, hourly wind generation data were normalized with respect
to the total installed capacity recorded at the end of each
respective year. Similarly, the aggregate hourly wind gener-
ation for the entire group of twelve countries was normalized
by the sum of installed capacities in all of them. While this
simplification introduces some error—since installed capacity
evolves over the year—the relative yearly growth is relatively
small, and thus the approximation remains reasonable. The
assumption of exclusive wind supply is not intended to reflect
practical system planning but rather to define an upper-bound
reference case that enables empirical comparison of adequacy
outcomes across different spatial and temporal configurations.

System load profiles, expressed as hourly electricity con-
sumption, were normalized by the annual peak hourly demand.

The intrinsic capacity credit—here referring strictly to on-
shore wind—was calculated using the following procedure: the
time series of normalized wind generation was multiplied by a
scalar factor F , and then the normalized system demand series
was subtracted from the result. The percentage of hours r in
which the resulting series was negative was then determined.
The capacity credit C, corresponding to a default risk of r, is
defined as:

C =
100

F
(1)

The empirically observed capacity credit val-
ues—interpretable as quantiles of a stochastic distribution at
a given level of risk—were analyzed as a function of the
default risk r. It was found that the relationship between C
and r exhibits a high degree of correlation with the inverse
distribution function of short-term production fluctuations, as
previously established in our earlier works [5], [6].

Specifically, we find that the capacity credit can be very
accurately modeled as a composite function of the form:

C(r) = a · rb + c · r + ε (2)

where a, b, and c are empirically fitted parameters, and ε
is the residual error term capturing the difference between the
observed and modeled values of capacity credit. Both C(r)
and r are expressed as percentages. Despite its nonlinearity,
the model remains interpretable and tractable for practical use.

In addition to directly analyzing the observed capacity
credit in individual countries and across the entire contiguous
geographic region—spanning the full width of the European
continent—this study also investigates hypothetical scenarios
in which the spatial distribution of installed wind capacity
differs from the actual configuration. These scenarios preserve
the measured temporal characteristics of normalized produc-
tion and consumption while varying the relative distribution
of installed capacity.

Several alternative spatial configurations were developed,
each optimized to improve general indicators of variabil-
ity—such as minimizing the overall variance of wind gen-
eration or maximizing the ratio of total production to its
variability. These simulations illustrate the potential benefits
of a more coordinated approach to the geographic allocation

Fig. 1. Capacity credit vs. default probability for 2019.

of wind capacity. The findings indicate that such hypothetical
redistribution strategies could yield a higher intrinsic capacity
credit compared to the currently observed configuration. How-
ever, as the analysis is based on time series from only two
individual years, the conclusions remain indicative rather than
definitive, highlighting the need for broader temporal coverage
in future research.

It is important to emphasize that the intrinsic capacity
credit analyzed above was derived through direct empirical
observation—essentially “watching nature”—based on mea-
sured onshore wind production and total electricity consump-
tion. As such, it inherently captures the full spectrum of
stochastic events that occurred during the two years studied,
including unpredictable production and demand fluctuations,
forced outages, plant shutdowns, localized demand drops, and
similar disturbances, which makes it highly relevant within the
temporal and geographical scope of the analysis.

Evidently, this type of analysis can be easily extended
to include any combination of generation technologies, in
any real or simulated configuration, provided that comparable
temporal and operational data are available.

IV. THE RESULTS

A. Actual Spatial Distribution Across the Countries

Figure 1 shows the relationship between capacity credit and
the probability of failing to meet instantaneous demand for the
year 2019. The dots represent empirically determined values,
while the lines correspond to the best-fit regression curves
based on (2), obtained by minimizing the total squared error.

Figure 2 presents the same type of analysis for the year
2024. Table III summarizes the fitted regression coefficients
and their corresponding R2 values for each case. Residual
errors between modeled and observed capacity credit val-
ues were generally small—typically below 1.5 percentage
points—confirming a close fit between the nonlinear model
and the empirical data.

In both analyzed years, two distinct groups of countries can
be observed: RO, BG, AT, and CRO on one side, and the
remaining countries on the other. The four mentioned coun-
tries, at least within the years considered, exhibit insufficient
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selected European countries over the analyzed years. To this
end, hourly wind generation data were normalized with respect
to the total installed capacity recorded at the end of each
respective year. Similarly, the aggregate hourly wind gener-
ation for the entire group of twelve countries was normalized
by the sum of installed capacities in all of them. While this
simplification introduces some error—since installed capacity
evolves over the year—the relative yearly growth is relatively
small, and thus the approximation remains reasonable. The
assumption of exclusive wind supply is not intended to reflect
practical system planning but rather to define an upper-bound
reference case that enables empirical comparison of adequacy
outcomes across different spatial and temporal configurations.

System load profiles, expressed as hourly electricity con-
sumption, were normalized by the annual peak hourly demand.

The intrinsic capacity credit—here referring strictly to on-
shore wind—was calculated using the following procedure: the
time series of normalized wind generation was multiplied by a
scalar factor F , and then the normalized system demand series
was subtracted from the result. The percentage of hours r in
which the resulting series was negative was then determined.
The capacity credit C, corresponding to a default risk of r, is
defined as:

C =
100

F
(1)

The empirically observed capacity credit val-
ues—interpretable as quantiles of a stochastic distribution at
a given level of risk—were analyzed as a function of the
default risk r. It was found that the relationship between C
and r exhibits a high degree of correlation with the inverse
distribution function of short-term production fluctuations, as
previously established in our earlier works [5], [6].

Specifically, we find that the capacity credit can be very
accurately modeled as a composite function of the form:

C(r) = a · rb + c · r + ε (2)

where a, b, and c are empirically fitted parameters, and ε
is the residual error term capturing the difference between the
observed and modeled values of capacity credit. Both C(r)
and r are expressed as percentages. Despite its nonlinearity,
the model remains interpretable and tractable for practical use.

In addition to directly analyzing the observed capacity
credit in individual countries and across the entire contiguous
geographic region—spanning the full width of the European
continent—this study also investigates hypothetical scenarios
in which the spatial distribution of installed wind capacity
differs from the actual configuration. These scenarios preserve
the measured temporal characteristics of normalized produc-
tion and consumption while varying the relative distribution
of installed capacity.

Several alternative spatial configurations were developed,
each optimized to improve general indicators of variabil-
ity—such as minimizing the overall variance of wind gen-
eration or maximizing the ratio of total production to its
variability. These simulations illustrate the potential benefits
of a more coordinated approach to the geographic allocation

Fig. 1. Capacity credit vs. default probability for 2019.

of wind capacity. The findings indicate that such hypothetical
redistribution strategies could yield a higher intrinsic capacity
credit compared to the currently observed configuration. How-
ever, as the analysis is based on time series from only two
individual years, the conclusions remain indicative rather than
definitive, highlighting the need for broader temporal coverage
in future research.

It is important to emphasize that the intrinsic capacity
credit analyzed above was derived through direct empirical
observation—essentially “watching nature”—based on mea-
sured onshore wind production and total electricity consump-
tion. As such, it inherently captures the full spectrum of
stochastic events that occurred during the two years studied,
including unpredictable production and demand fluctuations,
forced outages, plant shutdowns, localized demand drops, and
similar disturbances, which makes it highly relevant within the
temporal and geographical scope of the analysis.

Evidently, this type of analysis can be easily extended
to include any combination of generation technologies, in
any real or simulated configuration, provided that comparable
temporal and operational data are available.

IV. THE RESULTS

A. Actual Spatial Distribution Across the Countries

Figure 1 shows the relationship between capacity credit and
the probability of failing to meet instantaneous demand for the
year 2019. The dots represent empirically determined values,
while the lines correspond to the best-fit regression curves
based on (2), obtained by minimizing the total squared error.

Figure 2 presents the same type of analysis for the year
2024. Table III summarizes the fitted regression coefficients
and their corresponding R2 values for each case. Residual
errors between modeled and observed capacity credit val-
ues were generally small—typically below 1.5 percentage
points—confirming a close fit between the nonlinear model
and the empirical data.

In both analyzed years, two distinct groups of countries can
be observed: RO, BG, AT, and CRO on one side, and the
remaining countries on the other. The four mentioned coun-
tries, at least within the years considered, exhibit insufficient
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Fig. 3. Capacity credit vs. default probability under multiple hypothetical 
optimized spatial distributions for 2019.
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TABLE III
FITTED REGRESSION PARAMETERS AND R2 COEFFICIENTS FOR EACH
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intrinsic capacity credit from wind generation—meaning that
reasonable values of capacity credit, on the order of 5 to
10 percent, only occur under relatively unfavorable default
risk thresholds. In other words, relying on wind generation
as the only renewable generation technology in them would
be very costly in terms of additional resources, such as storage
facilities, network upgrades, etc., needed to ensure system
adequacy and stabilize the grid.

It is also worth noting that in both years, the SUM curve
exhibited the most favorable trade-off between probability
of default and capacity credit. Specifically, a 10% capacity

Fig. 3. Capacity credit vs. default probability under multiple hypothetical
optimized spatial distributions for 2019.

credit level was attainable with a default probability of just
2–3%, which, while higher than typical reliability targets used
by system operators, provides a useful reference point for
comparing adequacy outcomes across configurations.

Given the limited scope of this study, these preliminary
findings should be revisited and verified using a considerably
broader dataset.

B. Hypothetical Geographic Allocations Yielding Greater Ca-
pacity Credit

This naturally raises the question of whether, through hypo-
thetical policies involving quotas for the installation of wind
power (or other types of renewable energy), it would be
possible—now or in the future—to achieve a higher overall
level of system adequacy, that is, a higher capacity credit for
the same level of supply risk.

To investigate this, we used the normalized time series of
wind generation from all participating countries and deter-
mined the optimal relative distribution of installed capacity
based on several criteria. These included: minimizing the
standard deviation of total production (denoted σ); minimizing
the standard deviation of net production—defined as total
generation minus load—(denoted σ-n); minimizing the maxi-
mum absolute hourly change in total production (denoted ∆);
maximizing the ratio between total annual energy production
and the standard deviation (denoted µ/σ); and maximizing the
ratio between total annual energy production and the variance
(denoted µ/σ2). These symbols are used to distinguish the
respective scenarios in Figures 3 and 4.

In all scenarios, the optimized spatial distributions yielded
better outcomes than the actual installed capacity distribution.
This suggests that, at least in principle and under current
electricity consumption profiles, the implementation of coordi-
nated allocation policies could lead to a meaningful improve-
ment in the overall intrinsic capacity credit of this generation
technology.

On the other hand, we must emphasize that coordinating
such policies at a multinational level across this scale would
likely prove extremely challenging, if not infeasible.
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fitted regression coefficients and their corresponding R2 values for 
each case. Residual errors between modeled and observed capacity 
credit values were generally small — typically below 1.5 percent-
age points — confirming a close fit between the nonlinear model 
and the empirical data.

In both analyzed years, two distinct groups of countries can 
be observed: RO, BG, AT, and CRO on one side, and the remain-
ing countries on the other. The four mentioned countries, at least 
within the years considered, exhibit insufficient intrinsic capacity 
credit from wind generation — meaning that reasonable values of 
capacity credit, on the order of 5 to 10 percent, only occur under 
relatively unfavorable default risk thresholds. In other words, rely-
ing on wind generation as the only renewable generation technol-
ogy in them would be very costly in terms of additional resources, 
such as storage facilities, network upgrades, etc., needed to ensure 
system adequacy and stabilize the grid.

It is also worth noting that in both years, the SUM curve exhib-
ited the most favorable trade-off between probability of default and 
capacity credit. Specifically, a 10% capacity credit level was attain-
able with a default probability of just 2–3%, which, while higher 
than typical reliability targets used by system operators, provides 
a useful reference point for comparing adequacy outcomes across 
configurations.

Given the limited scope of this study, these preliminary find-
ings should be revisited and verified using a considerably broader 
dataset.

B. Hypothetical Geographic Allocations 
Yielding Greater Capacity Credit

This naturally raises the question of whether, through hypo- 
thetical policies involving quotas for the installation of wind power 
(or other types of renewable energy), it would be possible — now 
or in the future—to achieve a higher overall level of system ad-
equacy, that is, a higher capacity credit for the same level of supply 
risk.

To investigate this, we used the normalized time series of wind 
generation from all participating countries and determined the op-
timal relative distribution of installed capacity based on several 
criteria. These included: minimizing the standard deviation of total 
production (denoted σ); minimizing the standard deviation of net 
production — defined as total generation minus load — (denoted 
σ-n); minimizing the maximum absolute hourly change in total 
production (denoted ∆); maximizing the ratio between total annual 
energy production and the standard deviation (denoted µ/σ); and 
maximizing the ratio between total annual energy production and 
the variance (denoted µ/σ2). These symbols are used to distinguish 
the respective scenarios in Figures 3 and 4.

In all scenarios, the optimized spatial distributions yielded bet-
ter outcomes than the actual installed capacity distribution. This 
suggests that, at least in principle and under current electricity 
consumption profiles, the implementation of coordinated alloca-
tion policies could lead to a meaningful improvement in the overall 
intrinsic capacity credit of this generation technology.

On the other hand, we must emphasize that coordinating such 
policies at a multinational level across this scale would likely prove 
extremely challenging, if not infeasible.

Fig. 4. Capacity credit vs. default probability under multiple hypothetical 
optimized spatial distributions for 2024.
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and the standard deviation (denoted µ/σ); and maximizing the
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better outcomes than the actual installed capacity distribution.
This suggests that, at least in principle and under current
electricity consumption profiles, the implementation of coordi-
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ment in the overall intrinsic capacity credit of this generation
technology.
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such policies at a multinational level across this scale would
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Table III

Fitted Regression Parameters and R2 Coefficients for Each 
Country and Year.
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Fig. 4. Capacity credit vs. default probability under multiple hypothetical
optimized spatial distributions for 2024.

TABLE IV
OPTIMAL HYPOTHETICAL VS. OBSERVED SPATIAL DISTRIBUTIONS OF

INSTALLED CAPACITY ACROSS COUNTRIES, BASED ON SELECTED
OPTIMIZATION CRITERIA.

Figures 3 and 4 illustrate the relationship between capacity
credit and default probability under the optimized spatial
distributions for 2019 and 2024, respectively. Each curve
represents one of the optimization scenarios introduced earlier.
In all cases, the curves lie to the left of the reference curve for
the actual spatial distribution (SUM), confirming that improved
adequacy outcomes can, in principle, be achieved through
optimized geographic allocation.

Table IV provides a comparative overview of the optimal
relative distribution of installed capacity by country for both
analyzed years, along with a comparison to the observed
(actual) distribution. For the sake of brevity, the table includes
only the results of optimizations according to two specific
criteria: the minimum peak absolute hourly change in total
production (denoted by the symbol ∆) and the ratio of total
annual production to its standard deviation (denoted as µ/σ).

These results should be interpreted in the context of each
country’s relative size. Population, as referenced in Section II,
serves as a reasonable proxy for national scale, though ad-
ditional factors—such as the land area available for specific
types of power generation—may also be relevant.

For example, in the case of Croatia—which, apart from

Luxembourg, is the smallest of the countries included—it
would be practically impossible to allocate 17.80% of the total
wind capacity, as suggested by the optimization result under
the ∆ scenario in Table IV for the year 2019. Since the total
installed capacity across all countries now exceeds 140 GW,
such a share would imply more than 25 GW of wind power
within Croatia alone, which is unrealistic given the country’s
limited territorial area.

Consequently, more advanced future research should incor-
porate upper bounds on installable capacity per country into
the optimization problem, taking into account territorial, regu-
latory, and political constraints. Other system-level limitations,
such as the impact of high wind penetration on reduced system
inertia and frequency stability, may also play a role and merit
further consideration in future studies.

V. DISCUSSION AND FUTURE WORK

The analysis presented in this paper provides a preliminary
empirical view of the intrinsic capacity credit of wind power
across twelve European countries, highlighting several aspects
that may warrant further investigation.

One limitation of the study is the relatively narrow temporal
scope, covering only the years 2019 and 2024. These years
were deliberately selected to represent conditions before and
after a period of significant systemic disruptions. However,
expanding the time horizon could help assess the robustness
of the observed patterns and improve generalizability. On the
other hand, the geographic scope of the study, which includes a
diverse cross-section of southern, central, and southeastern Eu-
rope with a combined population of 278 million, may provide
a representative basis for regional system-level considerations,
although it can be broadened, too.

A perhaps noteworthy observation is the similarity in
functional form between the dependence of capacity credit
on default probability and that of the so-called regulation
multiplier—a proxy for the demand for secondary regulation
reserves—on default probability, as identified in our earlier
studies [5], [6]. Although the variables involved are not the
same, and the underlying mechanisms differ, the resemblance
in empirical structure invites further examination. At present,
the reason for this alignment remains unclear.

Another aspect observed in both analyzed years is that the
aggregated capacity credit across all countries consistently
exceeded the values obtained for any individual country. This
is broadly consistent with the idea that geographic diversifica-
tion helps mitigate the variability of renewable generation and
supports system adequacy.

Results from the hypothetical spatial allocation scenarios
suggest that an alternative geographic distribution of installed
capacity could lead to improved adequacy outcomes. Although
the methodology shows what could, in principle, be achieved,
it is unlikely that such optimizations could be implemented
in practice. Wind power deployment is largely driven by
decentralized and private investment decisions, and coordi-
nated planning across national boundaries poses considerable
institutional and political challenges.

One strength of this approach is that it relies solely on
measured data. As such, the observed outcomes reflect the
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Table IV

Optimal Hypothetical Vs. Observed Spatial Distributions 
of Installed Capacity Across Countries, Based on Selected 

Optimization Criteria.

Figures 3 and 4 illustrate the relationship between capacity 
credit and default probability under the optimized spatial distribu-
tions for 2019 and 2024, respectively. Each curve represents one 
of the optimization scenarios introduced earlier. In all cases, the 
curves lie to the left of the reference curve for the actual spatial 
distribution (SUM), confirming that improved adequacy outcomes 
can, in principle, be achieved through optimized geographic 
allocation.

Table IV provides a comparative overview of the optimal rela-
tive distribution of installed capacity by country for both analyzed 
years, along with a comparison to the observed (actual) distribu-
tion. For the sake of brevity, the table includes only the results of 
optimizations according to two specific criteria: the minimum peak 
absolute hourly change in total production (denoted by the symbol 
∆) and the ratio of total annual production to its standard deviation 
(denoted as µ/σ). These results should be interpreted in the context 
of each country’s relative size. Population, as referenced in Section 
II, serves as a reasonable proxy for national scale, though addi-
tional factors—such as the land area available for specific types of 
power generation—may also be relevant.

For example, in the case of Croatia — which, apart from Lux-
embourg, is the smallest of the countries included — it would be 
practically impossible to allocate 17.80% of the total wind capac-
ity, as suggested by the optimization result under the ∆ scenario in 
Table IV for the year 2019. Since the total installed capacity across 
all countries now exceeds 140 GW, such a share would imply more 
than 25 GW of wind power within Croatia alone, which is unreal-
istic given the country’s limited territorial area.

Consequently, more advanced future research should incor- 
porate upper bounds on installable capacity per country into the 
optimization problem, taking into account territorial, regulatory, 
and political constraints. Other system-level limitations, such as 
the impact of high wind penetration on reduced system inertia and 
frequency stability, may also play a role and merit further consid-
eration in future studies.

V. Discussion And Future Work
The analysis presented in this paper provides a preliminary em-

pirical view of the intrinsic capacity credit of wind power across 
twelve European countries, highlighting several aspects that may 
warrant further investigation.

One limitation of the study is the relatively narrow temporal 

scope, covering only the years 2019 and 2024. These years were 
deliberately selected to represent conditions before and after a 
period of significant systemic disruptions. However, expanding 
the time horizon could help assess the robustness of the observed 
patterns and improve generalizability. On the other hand, the geo-
graphic scope of the study, which includes a diverse cross-section 
of southern, central, and southeastern Europe with a combined 
population of 278 million, may provide a representative basis for 
regional system-level considerations, although it can be broad-
ened, too.

A perhaps noteworthy observation is the similarity in function-
al form between the dependence of capacity credit on default prob-
ability and that of the so-called regulation multiplier—a proxy for 
the demand for secondary regulation reserves—on default proba-
bility, as identified in our earlier studies [5], [6]. Although the vari-
ables involved are not the same, and the underlying mechanisms 
differ, the resemblance in empirical structure invites further exami-
nation. At present, the reason for this alignment remains unclear.

Another aspect observed in both analyzed years is that the ag-
gregated capacity credit across all countries consistently exceeded 
the values obtained for any individual country. This is broadly 
consistent with the idea that geographic diversification helps miti-
gate the variability of renewable generation and supports system 
adequacy.

Results from the hypothetical spatial allocation scenarios sug-
gest that an alternative geographic distribution of installed capacity 
could lead to improved adequacy outcomes. Although the method-
ology shows what could, in principle, be achieved, it is unlikely that 
such optimizations could be implemented in practice. Wind power 
deployment is largely driven by decentralized and private invest-
ment decisions, and coordinated planning across national bounda-
ries poses considerable institutional and political challenges.

One strength of this approach is that it relies solely on meas-
ured data. As such, the observed outcomes reflect the actual vari-
ability and characteristics of the power system during the period in 
question, including both planned and unplanned events. Within the 
limits of data resolution, accuracy, and scope, the method captures 
realistic conditions without additional modeling assumptions.

Furthermore, the same approach could be extended to other 
types of generation, or to study marginal effects when additional 
capacity is introduced or removed from an existing system. These 
directions may be useful for future research, particularly in the con-
text of mixed technology portfolios or systems undergoing transi-
tions toward higher shares of renewable energy.

VI. Conclusions
This study explored the intrinsic capacity credit of wind pow-

er across a set of twelve European countries, based on measured 
hourly data for the years 2019 and 2024. The analysis was con-
ducted under the assumption that wind generation would be the 
sole source of supply, allowing for a direct assessment of how reli-
ably it could meet demand without additional system support.

The results showed significant variation in capacity credit 
values among countries, with consistently higher values obtained 
when production was aggregated across the entire region. This is 
consistent with the notion that spatial diversification can help miti-
gate the intermittency of wind generation.

A nonlinear regression model was fitted to describe the rela-
tionship between capacity credit and default probability. While the 
model provided a good empirical fit, its similarity to previously 
observed structures in reserve-related studies remains unexplained 
and may be a subject of future investigation.
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Fig. 4. Capacity credit vs. default probability under multiple hypothetical
optimized spatial distributions for 2024.
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multiplier—a proxy for the demand for secondary regulation
reserves—on default probability, as identified in our earlier
studies [5], [6]. Although the variables involved are not the
same, and the underlying mechanisms differ, the resemblance
in empirical structure invites further examination. At present,
the reason for this alignment remains unclear.

Another aspect observed in both analyzed years is that the
aggregated capacity credit across all countries consistently
exceeded the values obtained for any individual country. This
is broadly consistent with the idea that geographic diversifica-
tion helps mitigate the variability of renewable generation and
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suggest that an alternative geographic distribution of installed
capacity could lead to improved adequacy outcomes. Although
the methodology shows what could, in principle, be achieved,
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in practice. Wind power deployment is largely driven by
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Additionally, hypothetical spatial redistributions of installed 
capacity were evaluated using several statistical optimization crite-
ria. These scenarios produced improved adequacy outcomes com-
pared to the actual capacity distribution, although their practical 
implementation would likely face considerable challenges.

This provides a foundation for potential extensions, such as ana-
lyzing mixed technology portfolios or assessing marginal contribu-
tions of additional capacity under different system configurations.
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Arc Flash Calculation for 110/20 kV HV/MV Substation  
Viktor Milardić, Amir Tokić, Anamari Nakić

Summary —This paper presents arc flash calculation for 110/20 
kV HV/MV substation that follows IEEE 1584:2018 Standard. The 
IEEE 1584:2018 standard has been completely revised compared to 
the IEEE 1584:2002 standard, and according to the IEEE 1584:2002 
standard, the calculation of an electric arc can no longer be perfor-
med. The paper shows how calculating the risk assessment to identify 
potential electrical hazards and implement appropriate safety mea-
sures and ultimately to protect workers from arc-flash hazards. Arc 
flash calculation for the case of real  110/20 kV substation is shown.

Keywords — Calculation, Arc flash, IEEE 1584:2018 Standard. 

I. Introduction

An arc flash is a dangerous electrical explosion caused by 
an arc fault, which occurs when electrical current leaves 
its intended path and travels through the air between con-

ductors or from a conductor to ground. This can happen due to 
various reasons, such as equipment failure, improper installation, 
or maintenance errors. Arc flashes can be triggered by factors like 
dust, corrosion, condensation, or accidental contact with live parts.

   The explosion can reach temperatures up to 20 000 °C, 
causing severe burns, hearing loss, and even fatalities. It can also 
vaporize metal parts and create a pressure wave that can damage 
equipment and injure personnel.

    Implementing proper safety measures, such as regular ma-
intenance, using arc-resistant switchgear, and ensuring proper tra-
ining and use of personal protective equipment, can significantly 
reduce the risk.

   Compliance with standards IEEE 1584: 2018 [1] [2], NFPA 
70E: 2024 [3] and paper [4] is crucial for ensuring safety and mini-
mizing arc flash hazards.

II. Basic of IEEE Standard 1584
IEEE 1584 Standard helps protect workers from arc-flash ha-

zards. The standard provides mathematical models to calculate the 
arc-flash hazard distance and the incident energy to which workers 
could be exposed during their work on or near electrical equipment.

In relation to IEEE 1584:2002 standard, the IEEE 1584:2018 
standard has been completely changed, and according to the 
IEEE 1584:2002 standard, arc flash calculation can no longer be 
performed.

For more details, see the changes in the document IEEE 
1584_2018-2002_redline.

It defines the amount of thermal energy impressed on a surface 
at a certain distance from the source of an arc flash. This helps in 
determining the appropriate level of personal protective equipment 
(PPE) required.

IEEE 1584 Standard includes equations to calculate the arcing 
fault current, which is essential for understanding the potential se-
verity of an arc flash.

The standard considers different electrode configurations and 
enclosure sizes, which significantly impact the arc-flash hazard 
calculations.

The latest version, IEEE 1584-2018, includes new equations 
and guidance for more accurate arc-flash hazard assessments, re-
flecting extensive testing and model development.

NFPA 70E, Standard for Electrical Safety in the Workplace, is 
a critical standard to ensure electrical safety for employees in the 
workplace. 

NFPA 70E defines approach boundaries to protect workers 
from electrical hazards. These boundaries establish safe working 
distances around energized electrical conductors or circuit parts.

The standard requires a thorough risk assessment to identify 
potential electrical hazards and implement appropriate safety me-
asures. This includes evaluating the likelihood of an arc flash and 
its potential severity.

NFPA 70E specifies the types of PPE required for different le-
vels of electrical exposure. This includes flame-resistant clothing, 
gloves, face shields, and other protective gear. Employees must 
be trained in safe work practices and emergency procedures. The 
standard emphasizes the importance of regular training and drills 
to ensure workers are prepared for potential electrical incidents.

IEEE 1584 provides empirical formulas for determining arcing 
fault currents, incident energy and arc-flash boundary. This Stan-
dard establishes a ten-step procedure for gathering data and calcu-
lating arc flash hazard as follows:

•	 Collect the system and installation data
•	 Determine the system modes of operation 
•	 Determine the bolted fault currents
•	 Determine typical gap and enclosure size based upon 

system voltages and classes of equipment
•	 Determine the equipment electrode configuration
•	 Determine the working distances
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The standard requires a thorough risk assessment to identify 
potential electrical hazards and implement appropriate safety 
measures. This includes evaluating the likelihood of an arc flash 
and its potential severity. 

NFPA 70E specifies the types of PPE required for different 
levels of electrical exposure. This includes flame-resistant 
clothing, gloves, face shields, and other protective gear. 
Employees must be trained in safe work practices and 
emergency procedures. The standard emphasizes the 
importance of regular training and drills to ensure workers are 
prepared for potential electrical incidents. 

IEEE 1584 provides empirical formulas for determining 
arcing fault currents, incident energy and arc-flash boundary. 
This Standard establishes a ten-step procedure for gathering 
data and calculating arc flash hazard as follows: 

 
• Collect the system and installation data 
• Determine the system modes of operation  
• Determine the bolted fault currents 
• Determine typical gap and enclosure size based upon 

system voltages and classes of equipment 
• Determine the equipment electrode configuration 
• Determine the working distances 
• Calculation of arcing current 
• Determine the arc duration 
• Calculate the incident energy 
• Determine the arc-flash boundary for all equipment 

 
In the next part of the text, simplified calculation procedures 

for calculation of the arc currents, incident energy and arc-flash 
boundary are presented.  

 
(1) The intermediate average arcing currents can be 
determined using the relation: 
 
𝐼𝐼𝐼𝐼arc_Voc = 10𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘3log𝐺𝐺𝐺𝐺 ∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf10−𝑖𝑖𝑖𝑖10

𝑖𝑖𝑖𝑖=4   (1) 
 
where are: 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐼𝐼𝐼𝐼arc_Voc - the average rms arcing current at 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_Voc - the average rms arcing current at 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_Voc - the average rms arcing current at 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 
[kA] 
𝐺𝐺𝐺𝐺 - the gap distance between electrodes [mm] 
𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘10 - the coefficients regard to [1] 

 
(2) The reduced arcing currents, including the variation 
correction factor, are calculated from relations: 
 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑓𝑓 = ∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉oc7−𝑖𝑖𝑖𝑖7

𝑖𝑖𝑖𝑖=1  (2) 
𝐼𝐼𝐼𝐼arc_min = 𝐼𝐼𝐼𝐼arc�1 − 0.5𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑓𝑓�  (3) 
 
where are: 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑓𝑓 - the arcing current variation correction factor 
𝐼𝐼𝐼𝐼arc - the final or intermediate rms arcing current(s) [kA] 

𝐼𝐼𝐼𝐼arc_min - the second rms arcing current reduced based on the 
variation correction factor [kA] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage between 0.208 and 15.0 (20.0) 
[kV]  
𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘7 - the coefficients regard to [1] 

 
(3) The final arcing current can be determined using the next 
equations: 
 
𝐼𝐼𝐼𝐼arc_1 = 𝐼𝐼𝐼𝐼arc_2700−𝐼𝐼𝐼𝐼arc_600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐼𝐼𝐼𝐼arc_2700  (4) 

𝐼𝐼𝐼𝐼arc_2 = 𝐼𝐼𝐼𝐼arc_14300−𝐼𝐼𝐼𝐼arc_2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐼𝐼𝐼𝐼arc_14300  (5) 

𝐼𝐼𝐼𝐼arc_3 = 𝐼𝐼𝐼𝐼arc_1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐼𝐼𝐼𝐼arc_2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (6) 
 
where are: 
𝐼𝐼𝐼𝐼arc_1 - the first 𝐼𝐼𝐼𝐼arc interpolation term between 600 𝑉𝑉𝑉𝑉 and 
2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2 - the second 𝐼𝐼𝐼𝐼arc interpolation term used when 𝑉𝑉𝑉𝑉oc   is 
greater than 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_3 - the third 𝐼𝐼𝐼𝐼arc interpolation term used when 𝑉𝑉𝑉𝑉oc   is less 
than 2700 𝑉𝑉𝑉𝑉 [kA] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

 
(4.a) The equivalent height and width are determined using the 
next relations: 
 
Width1 = 1

25.4
�660.4 + (Width − 660.4) 𝑉𝑉𝑉𝑉oc+𝐴𝐴𝐴𝐴

𝐵𝐵𝐵𝐵
�  (7) 

Height1 = 1
25.4

�660.4 + (Height − 660.4) 𝑉𝑉𝑉𝑉oc+𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

�  (8) 
 
where are: 
Width1 - the equivalent enclosure width 
Height1 - the equivalent enclosure height 
Width - the actual enclosure width [mm] 
Height - the actual enclosure height [mm] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 
𝐴𝐴𝐴𝐴 - constant equal to 4 for VCB and 10 for VCBB and HCB 
𝐵𝐵𝐵𝐵 - constant equal to 20 for VCB, 24 for VCBB and 22 for 
HCB 
The following electrode configurations (test arrangements) are 
defined. 
VCB: Vertical conductors/electrodes inside a metal 
box/enclosure 
VCBB: Vertical conductors/electrodes terminated in an 
insulating barrier inside a metal box/enclosure 
HCB: Horizontal conductors/electrodes inside a metal 
box/enclosure 
VOA: Vertical conductors/electrodes in open air 
HOA: Horizontal conductors/electrodes in open air. 
   The general guidelines to determine the equivalent enclosure 
height and width for different ranges of enclosure dimensions 
and electrode configurations are presented in [1]. 

 
(4.b) The equivalent enclosure size (EES) is determined using 
the equivalent width and height from relation: 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = Height1+Width1

2
  (9) 
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The standard requires a thorough risk assessment to identify 
potential electrical hazards and implement appropriate safety 
measures. This includes evaluating the likelihood of an arc flash 
and its potential severity. 

NFPA 70E specifies the types of PPE required for different 
levels of electrical exposure. This includes flame-resistant 
clothing, gloves, face shields, and other protective gear. 
Employees must be trained in safe work practices and 
emergency procedures. The standard emphasizes the 
importance of regular training and drills to ensure workers are 
prepared for potential electrical incidents. 

IEEE 1584 provides empirical formulas for determining 
arcing fault currents, incident energy and arc-flash boundary. 
This Standard establishes a ten-step procedure for gathering 
data and calculating arc flash hazard as follows: 
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• Determine the working distances 
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where are: 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑓𝑓 - the arcing current variation correction factor 
𝐼𝐼𝐼𝐼arc - the final or intermediate rms arcing current(s) [kA] 

𝐼𝐼𝐼𝐼arc_min - the second rms arcing current reduced based on the 
variation correction factor [kA] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage between 0.208 and 15.0 (20.0) 
[kV]  
𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘7 - the coefficients regard to [1] 

 
(3) The final arcing current can be determined using the next 
equations: 
 
𝐼𝐼𝐼𝐼arc_1 = 𝐼𝐼𝐼𝐼arc_2700−𝐼𝐼𝐼𝐼arc_600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐼𝐼𝐼𝐼arc_2700  (4) 

𝐼𝐼𝐼𝐼arc_2 = 𝐼𝐼𝐼𝐼arc_14300−𝐼𝐼𝐼𝐼arc_2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐼𝐼𝐼𝐼arc_14300  (5) 

𝐼𝐼𝐼𝐼arc_3 = 𝐼𝐼𝐼𝐼arc_1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐼𝐼𝐼𝐼arc_2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (6) 
 
where are: 
𝐼𝐼𝐼𝐼arc_1 - the first 𝐼𝐼𝐼𝐼arc interpolation term between 600 𝑉𝑉𝑉𝑉 and 
2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2 - the second 𝐼𝐼𝐼𝐼arc interpolation term used when 𝑉𝑉𝑉𝑉oc   is 
greater than 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_3 - the third 𝐼𝐼𝐼𝐼arc interpolation term used when 𝑉𝑉𝑉𝑉oc   is less 
than 2700 𝑉𝑉𝑉𝑉 [kA] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

 
(4.a) The equivalent height and width are determined using the 
next relations: 
 
Width1 = 1

25.4
�660.4 + (Width − 660.4) 𝑉𝑉𝑉𝑉oc+𝐴𝐴𝐴𝐴

𝐵𝐵𝐵𝐵
�  (7) 

Height1 = 1
25.4

�660.4 + (Height − 660.4) 𝑉𝑉𝑉𝑉oc+𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵

�  (8) 
 
where are: 
Width1 - the equivalent enclosure width 
Height1 - the equivalent enclosure height 
Width - the actual enclosure width [mm] 
Height - the actual enclosure height [mm] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 
𝐴𝐴𝐴𝐴 - constant equal to 4 for VCB and 10 for VCBB and HCB 
𝐵𝐵𝐵𝐵 - constant equal to 20 for VCB, 24 for VCBB and 22 for 
HCB 
The following electrode configurations (test arrangements) are 
defined. 
VCB: Vertical conductors/electrodes inside a metal 
box/enclosure 
VCBB: Vertical conductors/electrodes terminated in an 
insulating barrier inside a metal box/enclosure 
HCB: Horizontal conductors/electrodes inside a metal 
box/enclosure 
VOA: Vertical conductors/electrodes in open air 
HOA: Horizontal conductors/electrodes in open air. 
   The general guidelines to determine the equivalent enclosure 
height and width for different ranges of enclosure dimensions 
and electrode configurations are presented in [1]. 

 
(4.b) The equivalent enclosure size (EES) is determined using 
the equivalent width and height from relation: 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = Height1+Width1

2
  (9) 

 
3 

 

where are: 
Width1 - the equivalent enclosure width 
Height1 - the equivalent enclosure height 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size 

 
(4.c) The correction factor (CF) for a “Typical Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑏𝑏𝑏𝑏3  (10) 
 
The correction factor (CF) for a “Shallow Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 

𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2+𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏3 
 (11) 

 
where are: 
𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3 - the coefficients refer to [1] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the enclosure size correction factor 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size (for typical box enclosures 
the minimum value of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is 20) 

 
(5) The intermediate incident energy values are calculated 
using the next relations: 
 

𝐸𝐸𝐸𝐸600 =
12.552

50
 𝑇𝑇𝑇𝑇⋅   

⋅  10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

 (12) 
 

𝐸𝐸𝐸𝐸2700 =
12.552

50
 𝑇𝑇𝑇𝑇⋅ 

 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

 (13) 
 
𝐸𝐸𝐸𝐸14300 =
12.552
50

 𝑇𝑇𝑇𝑇⋅ 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

(14) 
 
where are: 
𝐸𝐸𝐸𝐸600 - the incident energy at 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸2700 - the incident energy at 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸14300 - the incident energy at 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 

𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 
 

(6) The final incident energy values are estimated using the 
next equations: 
 
𝐸𝐸𝐸𝐸1 = 𝐸𝐸𝐸𝐸2700−𝐸𝐸𝐸𝐸600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐸𝐸𝐸𝐸2700  (15) 

𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸14300−𝐸𝐸𝐸𝐸2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐸𝐸𝐸𝐸14300  (16) 

𝐸𝐸𝐸𝐸3 = 𝐸𝐸𝐸𝐸1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐸𝐸𝐸𝐸2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (17) 
 
where are: 
𝐸𝐸𝐸𝐸1 - the first 𝐸𝐸𝐸𝐸 interpolation term between 600 𝑉𝑉𝑉𝑉 and 2700 𝑉𝑉𝑉𝑉 
[J/cm2] 
𝐸𝐸𝐸𝐸2 - the second 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is greater 
than 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸3 - the third 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is less than 
2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

 
(7) The intermediate arc-flash boundary values are calculated 
using the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (18) 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (19) 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (20) 
 
 
where are: 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [mm] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 
𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 

 
(8) The final arc-flash boundary values are calculated using 
the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵1 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700  (21) 

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶14300−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300  (22) 

•	 Calculation of arcing current
•	 Determine the arc duration
•	 Calculate the incident energy
•	 Determine the arc-flash boundary for all equipment

In the next part of the text, simplified calculation procedures for 
calculation of the arc currents, incident energy and arc-flash boun-
dary are presented. 

(1) The intermediate average arcing currents can be determined 
using the relation:

Viktor Milardić, Amir Tokić, Anamari Nakić, Arc Flash Calculation for 110/20 kV HV/MV Substation, Journal of Energy, vol. 74 Number 1 (2025), 9–12 
https://doi.org/10.37798/2025741710    
© 2025 Copyright for this paper by authors. Use permitted under Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License
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where are: 
Width1 - the equivalent enclosure width 
Height1 - the equivalent enclosure height 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size 

 
(4.c) The correction factor (CF) for a “Typical Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑏𝑏𝑏𝑏3  (10) 
 
The correction factor (CF) for a “Shallow Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 

𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2+𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏3 
 (11) 

 
where are: 
𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3 - the coefficients refer to [1] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the enclosure size correction factor 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size (for typical box enclosures 
the minimum value of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is 20) 

 
(5) The intermediate incident energy values are calculated 
using the next relations: 
 

𝐸𝐸𝐸𝐸600 =
12.552

50
 𝑇𝑇𝑇𝑇⋅   

⋅  10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

 (12) 
 

𝐸𝐸𝐸𝐸2700 =
12.552

50
 𝑇𝑇𝑇𝑇⋅ 

 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

 (13) 
 
𝐸𝐸𝐸𝐸14300 =
12.552
50

 𝑇𝑇𝑇𝑇⋅ 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

(14) 
 
where are: 
𝐸𝐸𝐸𝐸600 - the incident energy at 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸2700 - the incident energy at 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸14300 - the incident energy at 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 

𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 
 

(6) The final incident energy values are estimated using the 
next equations: 
 
𝐸𝐸𝐸𝐸1 = 𝐸𝐸𝐸𝐸2700−𝐸𝐸𝐸𝐸600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐸𝐸𝐸𝐸2700  (15) 

𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸14300−𝐸𝐸𝐸𝐸2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐸𝐸𝐸𝐸14300  (16) 

𝐸𝐸𝐸𝐸3 = 𝐸𝐸𝐸𝐸1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐸𝐸𝐸𝐸2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (17) 
 
where are: 
𝐸𝐸𝐸𝐸1 - the first 𝐸𝐸𝐸𝐸 interpolation term between 600 𝑉𝑉𝑉𝑉 and 2700 𝑉𝑉𝑉𝑉 
[J/cm2] 
𝐸𝐸𝐸𝐸2 - the second 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is greater 
than 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸3 - the third 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is less than 
2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

 
(7) The intermediate arc-flash boundary values are calculated 
using the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (18) 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (19) 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (20) 
 
 
where are: 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [mm] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 
𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 

 
(8) The final arc-flash boundary values are calculated using 
the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵1 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700  (21) 

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶14300−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300  (22) 

3 
 

where are: 
Width1 - the equivalent enclosure width 
Height1 - the equivalent enclosure height 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size 

 
(4.c) The correction factor (CF) for a “Typical Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑏𝑏𝑏𝑏3  (10) 
 
The correction factor (CF) for a “Shallow Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 

𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2+𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏3 
 (11) 

 
where are: 
𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3 - the coefficients refer to [1] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the enclosure size correction factor 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size (for typical box enclosures 
the minimum value of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is 20) 

 
(5) The intermediate incident energy values are calculated 
using the next relations: 
 

𝐸𝐸𝐸𝐸600 =
12.552

50
 𝑇𝑇𝑇𝑇⋅   

⋅  10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

 (12) 
 

𝐸𝐸𝐸𝐸2700 =
12.552

50
 𝑇𝑇𝑇𝑇⋅ 

 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

 (13) 
 
𝐸𝐸𝐸𝐸14300 =
12.552
50

 𝑇𝑇𝑇𝑇⋅ 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

(14) 
 
where are: 
𝐸𝐸𝐸𝐸600 - the incident energy at 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸2700 - the incident energy at 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸14300 - the incident energy at 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 

𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 
 

(6) The final incident energy values are estimated using the 
next equations: 
 
𝐸𝐸𝐸𝐸1 = 𝐸𝐸𝐸𝐸2700−𝐸𝐸𝐸𝐸600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐸𝐸𝐸𝐸2700  (15) 

𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸14300−𝐸𝐸𝐸𝐸2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐸𝐸𝐸𝐸14300  (16) 

𝐸𝐸𝐸𝐸3 = 𝐸𝐸𝐸𝐸1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐸𝐸𝐸𝐸2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (17) 
 
where are: 
𝐸𝐸𝐸𝐸1 - the first 𝐸𝐸𝐸𝐸 interpolation term between 600 𝑉𝑉𝑉𝑉 and 2700 𝑉𝑉𝑉𝑉 
[J/cm2] 
𝐸𝐸𝐸𝐸2 - the second 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is greater 
than 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸3 - the third 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is less than 
2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

 
(7) The intermediate arc-flash boundary values are calculated 
using the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (18) 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (19) 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (20) 
 
 
where are: 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [mm] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 
𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 

 
(8) The final arc-flash boundary values are calculated using 
the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵1 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700  (21) 

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶14300−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300  (22) 
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where are: 
Width1 - the equivalent enclosure width 
Height1 - the equivalent enclosure height 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size 

 
(4.c) The correction factor (CF) for a “Typical Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑏𝑏𝑏𝑏3  (10) 
 
The correction factor (CF) for a “Shallow Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 

𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2+𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏3 
 (11) 

 
where are: 
𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3 - the coefficients refer to [1] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the enclosure size correction factor 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size (for typical box enclosures 
the minimum value of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is 20) 

 
(5) The intermediate incident energy values are calculated 
using the next relations: 
 

𝐸𝐸𝐸𝐸600 =
12.552

50
 𝑇𝑇𝑇𝑇⋅   

⋅  10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

 (12) 
 

𝐸𝐸𝐸𝐸2700 =
12.552

50
 𝑇𝑇𝑇𝑇⋅ 

 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

 (13) 
 
𝐸𝐸𝐸𝐸14300 =
12.552
50

 𝑇𝑇𝑇𝑇⋅ 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

(14) 
 
where are: 
𝐸𝐸𝐸𝐸600 - the incident energy at 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸2700 - the incident energy at 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸14300 - the incident energy at 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 

𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 
 

(6) The final incident energy values are estimated using the 
next equations: 
 
𝐸𝐸𝐸𝐸1 = 𝐸𝐸𝐸𝐸2700−𝐸𝐸𝐸𝐸600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐸𝐸𝐸𝐸2700  (15) 

𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸14300−𝐸𝐸𝐸𝐸2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐸𝐸𝐸𝐸14300  (16) 

𝐸𝐸𝐸𝐸3 = 𝐸𝐸𝐸𝐸1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐸𝐸𝐸𝐸2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (17) 
 
where are: 
𝐸𝐸𝐸𝐸1 - the first 𝐸𝐸𝐸𝐸 interpolation term between 600 𝑉𝑉𝑉𝑉 and 2700 𝑉𝑉𝑉𝑉 
[J/cm2] 
𝐸𝐸𝐸𝐸2 - the second 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is greater 
than 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸3 - the third 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is less than 
2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

 
(7) The intermediate arc-flash boundary values are calculated 
using the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (18) 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (19) 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (20) 
 
 
where are: 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [mm] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 
𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 

 
(8) The final arc-flash boundary values are calculated using 
the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵1 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700  (21) 

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶14300−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300  (22) 

3 
 

where are: 
Width1 - the equivalent enclosure width 
Height1 - the equivalent enclosure height 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size 

 
(4.c) The correction factor (CF) for a “Typical Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 + 𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑏𝑏𝑏𝑏3  (10) 
 
The correction factor (CF) for a “Shallow Enclosure” is 
obtained by using relation: 
 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 

𝑏𝑏𝑏𝑏1𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2+𝑏𝑏𝑏𝑏2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸+𝑏𝑏𝑏𝑏3 
 (11) 

 
where are: 
𝑏𝑏𝑏𝑏1, 𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏3 - the coefficients refer to [1] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the enclosure size correction factor 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 - the equivalent enclosure size (for typical box enclosures 
the minimum value of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is 20) 

 
(5) The intermediate incident energy values are calculated 
using the next relations: 
 

𝐸𝐸𝐸𝐸600 =
12.552

50
 𝑇𝑇𝑇𝑇⋅   

⋅  10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   

 (12) 
 

𝐸𝐸𝐸𝐸2700 =
12.552

50
 𝑇𝑇𝑇𝑇⋅ 

 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

 (13) 
 
𝐸𝐸𝐸𝐸14300 =
12.552
50

 𝑇𝑇𝑇𝑇⋅ 

⋅10
𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+

𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘12log𝐷𝐷𝐷𝐷+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  

(14) 
 
where are: 
𝐸𝐸𝐸𝐸600 - the incident energy at 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸2700 - the incident energy at 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸14300 - the incident energy at 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 

𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 
 

(6) The final incident energy values are estimated using the 
next equations: 
 
𝐸𝐸𝐸𝐸1 = 𝐸𝐸𝐸𝐸2700−𝐸𝐸𝐸𝐸600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐸𝐸𝐸𝐸2700  (15) 

𝐸𝐸𝐸𝐸2 = 𝐸𝐸𝐸𝐸14300−𝐸𝐸𝐸𝐸2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐸𝐸𝐸𝐸14300  (16) 

𝐸𝐸𝐸𝐸3 = 𝐸𝐸𝐸𝐸1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐸𝐸𝐸𝐸2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (17) 
 
where are: 
𝐸𝐸𝐸𝐸1 - the first 𝐸𝐸𝐸𝐸 interpolation term between 600 𝑉𝑉𝑉𝑉 and 2700 𝑉𝑉𝑉𝑉 
[J/cm2] 
𝐸𝐸𝐸𝐸2 - the second 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is greater 
than 2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝐸𝐸𝐸𝐸3 - the third 𝐸𝐸𝐸𝐸 interpolation term used when 𝑉𝑉𝑉𝑉oc   is less than 
2700 𝑉𝑉𝑉𝑉 [J/cm2] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

 
(7) The intermediate arc-flash boundary values are calculated 
using the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_600
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_600+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (18) 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_2700
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_2700+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (19) 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 =

10

𝑘𝑘𝑘𝑘1+𝑘𝑘𝑘𝑘2log𝐺𝐺𝐺𝐺+
𝑘𝑘𝑘𝑘3𝐼𝐼𝐼𝐼arc_14300
∑ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝐼𝐼𝐼𝐼bf

11−𝑖𝑖𝑖𝑖10
𝑖𝑖𝑖𝑖=4

+𝑘𝑘𝑘𝑘11log𝐼𝐼𝐼𝐼bf+𝑘𝑘𝑘𝑘13log𝐼𝐼𝐼𝐼arc_14300+log
1
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−log

20
𝑇𝑇𝑇𝑇

−𝑘𝑘𝑘𝑘12   (20) 
 
 
where are: 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵600 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 600 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300 - the arc-flash boundary for 𝑉𝑉𝑉𝑉oc = 14 300 𝑉𝑉𝑉𝑉 [mm] 
𝑇𝑇𝑇𝑇 - the arc duration [ms] 
𝐺𝐺𝐺𝐺 - the gap distance between conductors (electrodes) [mm] 
𝐼𝐼𝐼𝐼arc_600 - the rms arcing current for 600 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_2700 - the rms arcing current for 2700 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼arc_14300 - the rms arcing current for 14 300 𝑉𝑉𝑉𝑉 [kA] 
𝐼𝐼𝐼𝐼bf - the bolted fault current for three-phase faults 
(symmetrical rms) [kA] 
𝐷𝐷𝐷𝐷 - the distance between electrodes and calorimeters (working 
distance) [mm] 
𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 - the correction factor for enclosure size (𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶 = 1 for VOA 
and HOA configurations) 
𝑘𝑘𝑘𝑘1, … , 𝑘𝑘𝑘𝑘13 - the coefficients regard to [1] 

 
(8) The final arc-flash boundary values are calculated using 
the next relations: 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵1 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶600

2.1
(𝑉𝑉𝑉𝑉oc − 2.7) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2700  (21) 

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶14300−𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2700
11.6

(𝑉𝑉𝑉𝑉oc − 14.3) +𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵14300  (22) 
4 

 

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵3 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (23) 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵1 - the first 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 interpolation term between 600 𝑉𝑉𝑉𝑉 and 
2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2 - the second 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 interpolation term used when 𝑉𝑉𝑉𝑉oc   is 
greater than 2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵3 - the third 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 interpolation term used when 𝑉𝑉𝑉𝑉oc   is less 
than 2700 𝑉𝑉𝑉𝑉 [mm] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

III. ARC FLASH CALCULATION 
   There are the following switchgears in the 110/20 kV HV/MV 
substation that is in Austria: 110 kV switchgears, power 
transformers 110/20 kV, earthing transformers and auxiliary 
transformers and MV switchgears. The real danger of arc flash 
exists only in rooms of MV switchgears. 
   110 kV switchgears are three-pole shielded GIS, and, in the 
event of a fault, there is no danger of the arc spreading outside 
the GIS. 
   Earthing transformers and auxiliary transformers are in a 
room where personnel do not stay, and rooms have large 
dimensions of 10.5 x 9.0 x 10.4 m. In case of transformer 
failure, i.e. failure of the cable terminations, there is no risk of 
high pressure. 
   There is a real danger of arc flash in rooms of MV switchgears 
and arc flash calculations need to be carried out. 
 
If it is observed the design of the MV switchgear that will be 
installed, Figure 1., it contains three compartments in which 
there are live parts: 
 A – Switching-device compartment 
 B - Busbar compartment 
 C – Connection compartment 

 
From experience with similar MV switchgear, the probability 
of arc flash in A and B compartments is very low. The highest 
probability of failure is in the C - Connection compartment, i.e. 
at the cable terminations. Therefore, the calculation will be 
carried out for the C - Connection compartment. 

The dimensions of the C compartment of some switchgears 
are approx. 80 x 70 x 114 cm. Input parameters are in Table I. 
Results are in Table II. 

 
TABLE I 

INPUT PARAMETERS 
Input parameters  
Configuration 1 VCB 
Three-phase bolted fault current 13.537 kA [5] 
Gap between conductors 160 mm 
Working distance 914.4 mm 
Enclosure dimension  
Width 800 mm 
Height 1140 mm 
Switch off time* 395 ms 

 

TABLE II 
RESULTS 

Results  
Lower Boundary Arcing Current:  12.62 kA 
Incident Energy: 6.01 cal/cm2 
Incident Energy: 25.14 J/cm2 
Flash-Protection Boundary 2554.54 mm 
 
   The dimensions of the C compartment of another 

switchgears are approx. 100 x 70 x 114 cm. Input parameters 
are in Table III. Results are in Table IV. 

 
TABLE III 

INPUT PARAMETERS 
Input parameters  
Configuration 1 VCB 
Three-phase bolted fault current 13.537 kA [5] 
Gap between conductors 160 mm 
Working distance 914.4 mm 
Enclosure dimension  
Width 1000 mm 
Height 1140 mm 
Switch off time* 395 ms 

 
TABLE IV 

RESULTS 
Results  
Lower Boundary Arcing Current:  12.62 kA 
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III. ARC FLASH CALCULATION 
   There are the following switchgears in the 110/20 kV HV/MV 
substation that is in Austria: 110 kV switchgears, power 
transformers 110/20 kV, earthing transformers and auxiliary 
transformers and MV switchgears. The real danger of arc flash 
exists only in rooms of MV switchgears. 
   110 kV switchgears are three-pole shielded GIS, and, in the 
event of a fault, there is no danger of the arc spreading outside 
the GIS. 
   Earthing transformers and auxiliary transformers are in a 
room where personnel do not stay, and rooms have large 
dimensions of 10.5 x 9.0 x 10.4 m. In case of transformer 
failure, i.e. failure of the cable terminations, there is no risk of 
high pressure. 
   There is a real danger of arc flash in rooms of MV switchgears 
and arc flash calculations need to be carried out. 
 
If it is observed the design of the MV switchgear that will be 
installed, Figure 1., it contains three compartments in which 
there are live parts: 
 A – Switching-device compartment 
 B - Busbar compartment 
 C – Connection compartment 

 
From experience with similar MV switchgear, the probability 
of arc flash in A and B compartments is very low. The highest 
probability of failure is in the C - Connection compartment, i.e. 
at the cable terminations. Therefore, the calculation will be 
carried out for the C - Connection compartment. 

The dimensions of the C compartment of some switchgears 
are approx. 80 x 70 x 114 cm. Input parameters are in Table I. 
Results are in Table II. 
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RESULTS 

Results  
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Incident Energy: 25.14 J/cm2 
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   The dimensions of the C compartment of another 

switchgears are approx. 100 x 70 x 114 cm. Input parameters 
are in Table III. Results are in Table IV. 
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room where personnel do not stay, and rooms have large 
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failure, i.e. failure of the cable terminations, there is no risk of 
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carried out for the C - Connection compartment. 

The dimensions of the C compartment of some switchgears 
are approx. 80 x 70 x 114 cm. Input parameters are in Table I. 
Results are in Table II. 

 
TABLE I 

INPUT PARAMETERS 
Input parameters  
Configuration 1 VCB 
Three-phase bolted fault current 13.537 kA [5] 
Gap between conductors 160 mm 
Working distance 914.4 mm 
Enclosure dimension  
Width 800 mm 
Height 1140 mm 
Switch off time* 395 ms 

 

TABLE II 
RESULTS 

Results  
Lower Boundary Arcing Current:  12.62 kA 
Incident Energy: 6.01 cal/cm2 
Incident Energy: 25.14 J/cm2 
Flash-Protection Boundary 2554.54 mm 
 
   The dimensions of the C compartment of another 

switchgears are approx. 100 x 70 x 114 cm. Input parameters 
are in Table III. Results are in Table IV. 

 
TABLE III 

INPUT PARAMETERS 
Input parameters  
Configuration 1 VCB 
Three-phase bolted fault current 13.537 kA [5] 
Gap between conductors 160 mm 
Working distance 914.4 mm 
Enclosure dimension  
Width 1000 mm 
Height 1140 mm 
Switch off time* 395 ms 

 
TABLE IV 

RESULTS 
Results  
Lower Boundary Arcing Current:  12.62 kA 
Incident Energy: 5.84 cal/cm2 
Incident Energy: 24.42 J/cm2 
Flash-Protection Boundary 2507.58 mm 

 
*Switch off time includes relay protection setting time (300 
ms), relay operating time (20 ms) and circuit breaker break 
time 75 ms. 

 
 
Fig. 1. Basic panel design – circuit-breaker panel [6]. 
 

The obtained value is greater than 1.2 cal/cm2 = 5.024 J/cm2 
and less than 12 cal/cm2 or 50.24 J/cm2. According to [3] PPE 

4 
 

𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵3 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1
2.1

(2.7 − 𝑉𝑉𝑉𝑉oc) + 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2
2.1

(𝑉𝑉𝑉𝑉oc − 0.6)  (23) 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵1 - the first 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 interpolation term between 600 𝑉𝑉𝑉𝑉 and 
2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵2 - the second 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 interpolation term used when 𝑉𝑉𝑉𝑉oc   is 
greater than 2700 𝑉𝑉𝑉𝑉 [mm] 
𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵3 - the third 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵 interpolation term used when 𝑉𝑉𝑉𝑉oc   is less 
than 2700 𝑉𝑉𝑉𝑉 [mm] 
𝑉𝑉𝑉𝑉oc - the open-circuit voltage (system voltage) [kV] 

III. ARC FLASH CALCULATION 
   There are the following switchgears in the 110/20 kV HV/MV 
substation that is in Austria: 110 kV switchgears, power 
transformers 110/20 kV, earthing transformers and auxiliary 
transformers and MV switchgears. The real danger of arc flash 
exists only in rooms of MV switchgears. 
   110 kV switchgears are three-pole shielded GIS, and, in the 
event of a fault, there is no danger of the arc spreading outside 
the GIS. 
   Earthing transformers and auxiliary transformers are in a 
room where personnel do not stay, and rooms have large 
dimensions of 10.5 x 9.0 x 10.4 m. In case of transformer 
failure, i.e. failure of the cable terminations, there is no risk of 
high pressure. 
   There is a real danger of arc flash in rooms of MV switchgears 
and arc flash calculations need to be carried out. 
 
If it is observed the design of the MV switchgear that will be 
installed, Figure 1., it contains three compartments in which 
there are live parts: 
 A – Switching-device compartment 
 B - Busbar compartment 
 C – Connection compartment 

 
From experience with similar MV switchgear, the probability 
of arc flash in A and B compartments is very low. The highest 
probability of failure is in the C - Connection compartment, i.e. 
at the cable terminations. Therefore, the calculation will be 
carried out for the C - Connection compartment. 

The dimensions of the C compartment of some switchgears 
are approx. 80 x 70 x 114 cm. Input parameters are in Table I. 
Results are in Table II. 

 
TABLE I 

INPUT PARAMETERS 
Input parameters  
Configuration 1 VCB 
Three-phase bolted fault current 13.537 kA [5] 
Gap between conductors 160 mm 
Working distance 914.4 mm 
Enclosure dimension  
Width 800 mm 
Height 1140 mm 
Switch off time* 395 ms 

 

TABLE II 
RESULTS 

Results  
Lower Boundary Arcing Current:  12.62 kA 
Incident Energy: 6.01 cal/cm2 
Incident Energy: 25.14 J/cm2 
Flash-Protection Boundary 2554.54 mm 
 
   The dimensions of the C compartment of another 

switchgears are approx. 100 x 70 x 114 cm. Input parameters 
are in Table III. Results are in Table IV. 

 
TABLE III 

INPUT PARAMETERS 
Input parameters  
Configuration 1 VCB 
Three-phase bolted fault current 13.537 kA [5] 
Gap between conductors 160 mm 
Working distance 914.4 mm 
Enclosure dimension  
Width 1000 mm 
Height 1140 mm 
Switch off time* 395 ms 

 
TABLE IV 

RESULTS 
Results  
Lower Boundary Arcing Current:  12.62 kA 
Incident Energy: 5.84 cal/cm2 
Incident Energy: 24.42 J/cm2 
Flash-Protection Boundary 2507.58 mm 

 
*Switch off time includes relay protection setting time (300 
ms), relay operating time (20 ms) and circuit breaker break 
time 75 ms. 

 
 
Fig. 1. Basic panel design – circuit-breaker panel [6]. 
 

The obtained value is greater than 1.2 cal/cm2 = 5.024 J/cm2 
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The obtained value is greater than 1.2 cal/cm2 = 5.024 J/cm2 and 
less than 12 cal/cm2 or 50.24 J/cm2. According to [3] PPE 1 is 
required. In accordance with the calculated incident energy values, 
labels should be affixed to all fields in the MV plant as shown in 
Appendix.
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Fig. 1. Basic panel design – circuit-breaker panel [6].

IV. Conclusions
The paper is focused on arc flash calculations. Implementing 

proper safety measures, such as regular maintenance, using arc-re-
sistant switchgear, and ensuring proper training and use of personal 
protective equipment, can significantly reduce the risk.

Compliance with standards IEEE 1584: 2018 [1],[2] and NFPA 
70E: 2024 [3] is crucial for ensuring safety and minimizing arc 
flash hazards.

   Results of arc flash calculation show that critical incident 
energy can be expected in the C compartment of all MV fields.  
Slightly smaller values ​​can be expected in another MV fields due 
to the larger width.

   If the medium-voltage switchgear will be equipped with pre-
ssure relief duct and meet internal arc classification according to 
IAC A FLR for all short-circuit currents up to 25 kA and an arc 
duration of 1 s arc flash labels are not required.
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Accurate Photovoltaic Power Forecasting in 5G
Networks: A Novel Neural Network Approach

Mohammed Moyed Ahmed

Summary—This study addresses the challenge of integrating 
photovoltaic (PV) power generation into 5G base stations to reduce 
energy consumption and promote sustainable energy integration in 
telecommunications infrastructure. A novel Improved Firefly Algo-
rithm-Back Propagation (IFA-BP) neural network model is proposed 
for enhanced PV power prediction accuracy and reliability. The met-
hodology combines Circle chaos mapping for optimized population 
initialization with nonlinear mutational perturbation to strengthen 
global search capabilities and improve convergence rates. Critical 
input parameters are systematically selected through grey correla-
tion analysis to optimize model efficiency and reduce computational 
overhead. Comprehensive comparative analysis with conventional 
BP and FA-BP models is conducted using historical operational data 
from 5G base station installations across varying weather conditions. 
Experimental results demonstrate the model’s superior performan-
ce and statistical robustness, achieving a Mean Absolute Percentage 
Error (MAPE) of 4.79 ± 0.31% and coefficient of determination (R2) 
of 0.9895 ± 0.0012 under sunny conditions, while maintaining excep-
tional weather adaptability with a MAPE of 12.20 ± 0.87% and R2 
of 0.9793 ± 0.0019 during cloudy weather. Statistical significance te-
sting confirms these improvements are not due to random variation 
(p < 0.001). The proposed IFA-BP model demonstrates remarkable 
resilience in challenging weather conditions and provides a robust 
foundation for intelligent power management in next-generation wi-
reless networks. However, the current evaluation is limited to two-
day testing data and would benefit from extended validation across 
diverse seasonal variations and broader environmental conditions to 
establish comprehensive generalizability for practical deployment in 
real-time power management systems. 

Keywords —5G Base Station, Photovoltaic Power Prediction, Im-
proved Firefly Algorithm
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I. Introduction
The advent of 5G communication networks has revo-
lutionized global connectivity with unprecedented data 

transmission capabilities, enabling enhanced mobile 
broadband, ultra-reliable low-latency communications, 
and massive machine-type communications [1]. However, 
the extensive deployment of large-scale antenna arrays 
and densified network infrastructure in 5G systems has 
led to a significant increase in power consumption [2]. 
Compared to 4G networks, 5G requires a higher number 
and density of base stations, resulting in energy consump-
tion levels nearly nine times higher. This substantial en-
ergy demand poses critical sustainability challenges, espe-
cially in the context of deteriorating ecological conditions 
and depleting traditional energy sources [3]. The esca-
lating energy requirements of 5G networks present both 
environmental and economic concerns. Base stations, 
which account for approximately 70% of total network 
energy consumption, have become focal points for imple-
menting energy-efficient solutions [4]. To a      ddres sthese   
sustainability concerns and reduce operational expenses, 
integrating photovoltaic (PV) power generation into 5G 
base stations has emerged as a promising solution [5]. 
This approach aligns with global initiatives for carbon 
neutrality and sustainable development while potentially 
reducing long-term operational costs of telecommunica-
tions infrastructure.

However, the inherent variability of PV power genera-
tion due to factors such as seasonal variations, day-night 
cycles, geographical location, and dynamic weather con-
ditions presents significant challenges for network reliabil-
ity [6]. The fluctuating and intermittent nature of solar 
energy resources necessitates accurate prediction of PV 
output power to ensure safety, stability, and optimization 
of base station power supply systems. Without precise 
forecasting, the integration of renewable energy sources 
may compromise network performance and quality of 
service. PV power forecasting research can be broadly 
categorized into direct and indirect prediction methods 
[7]. Indirect methods typically involve a two-step process: 
first predicting meteorological parameters (such as solar 
irradiation and temperature), then calculating expected 
PV output based on these predictions and PV system 
characteristics. In contrast, direct prediction approaches 
utilize historical PV output data and relevant meteoro-
logical variables to forecast photovoltaic power generation 
directly. This paper focuses on the direct prediction ap-
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proach, which is preferred due to its simplicity, reduced
error propagation, and higher prediction accuracy com-
pared to the more complex indirect prediction process [8].

While significant progress has been made in PV power
prediction for general applications, existing research rarely
addresses PV power prediction specifically for 5G base
station power supply systems, which have unique load
characteristics and reliability requirements. Additionally,
current group optimization algorithms used in these pre-
dictions often suffer from local optima issues and prema-
ture convergence, reducing the accuracy and reliability
of PV power predictions under varying environmental
conditions [9].

To bridge these gaps, this paper proposes an Improved
Firefly Algorithm-Back Propagation (IFA-BP) neural net-
work model for predicting photovoltaic power generation
in 5G base stations. The proposed approach enhances the
standard Firefly Algorithm through Circle chaos mapping
for population initialization and nonlinear mutational per-
turbation to improve global search capability. Further-
more, we implement grey correlation analysis to identify
the most influential meteorological factors affecting PV
output, thereby optimizing the model’s input parameters.

II. Related Research
Recent advancements in communication technologies

and sustainable energy systems have paved the way for in-
novative solutions in powering next-generation networks.
Several studies have contributed to this field, approaching
the challenge from different perspectives.

A. Energy Management in Telecommunications
The integration of renewable energy sources into

telecommunications infrastructure has gained significant
attention in recent years. Liu et al. [2] proposed a deep
learning framework for optimizing energy consumption in
5G base stations, achieving up to 27% reduction in energy
usage through predictive load balancing and dynamic
resource allocation. Similarly, Wu et al. [3] investigated
hybrid energy systems combining solar, wind, and battery
storage for 5G networks, demonstrating improved relia-
bility and reduced carbon emissions compared to conven-
tional grid-powered solutions.

Chen et al. [5] explored the concept of the ”5G Energy
Internet,” examining how 5G technologies can facilitate
the integration of distributed energy resources while si-
multaneously benefiting from them. Their work highlights
the bidirectional relationship between 5G networks and
renewable energy systems, suggesting a symbiotic frame-
work for future telecommunications infrastructure.

B. Advanced Prediction Methods for Renewable Energy
Accurate prediction of renewable energy output is cru-

cial for effective integration into critical systems like
telecommunications networks. Modern approaches have
evolved to include various machine learning and deep

learning techniques. Guo et al. [20] developed a MEA-
Wavelet Elman Neural Network for PV power predic-
tion, demonstrating improved accuracy through wavelet
decomposition and multi-scale analysis. Wang et al. [16]
proposed an innovative approach using the traditional
Chinese ”24 Solar Terms” calendar combined with hybrid
AI models for long-term PV prediction, achieving remark-
able accuracy for seasonal forecasting.

Contemporary methods such as Long Short-Term Mem-
ory (LSTM) networks, Gated Recurrent Units (GRU),
Temporal Convolutional Networks (TCN), and ensem-
ble methods like XGBoost and LightGBM have shown
promising results in time series forecasting tasks. These
approaches offer advantages in capturing long-term de-
pendencies and complex patterns in meteorological data,
presenting opportunities for future comparative studies
with the proposed IFA-BP methodology.

Han [22] introduced a Grey-LSSVM (Least Squares
Support Vector Machine) model for PV prediction that
effectively captured nonlinear relationships between mete-
orological variables and power output. Gao [23] advanced
neural network techniques for short-term PV prediction
by incorporating meteorological pattern recognition and
temporal correlations, significantly reducing prediction
errors for horizons of 15 minutes to 24 hours.

C. Optimization Algorithms in Neural Network Training
The effectiveness of neural networks for prediction tasks

heavily depends on the optimization algorithms used for
training. Zhang and Hao [24] applied Fireworks-Optimized
BP Neural Networks for PV prediction, demonstrating
superior performance compared to standard BP and ge-
netic algorithm approaches. Zhang et al. [9] conducted
an in-depth convergence analysis of improved Firefly Al-
gorithms, providing theoretical foundations for their en-
hanced global search capabilities and resistance to local
optima.

Sun and Zheng [10] implemented a Chaotic Firefly Algo-
rithm for wireless sensor network clustering, showing how
chaos theory can significantly improve the diversity and
exploration capabilities of population-based optimization
algorithms. Ma [11] developed improved BP Neural Net-
work applications with modified learning rate strategies
and momentum terms, achieving faster convergence and
enhanced generalization for prediction tasks.

D. Communication and Energy Integration in Next-
Generation Networks

The convergence of communication systems and energy
management presents opportunities for holistic optimiza-
tion. Vehicle-to-Grid (V2G) technologies have been ex-
plored by Uribe-Pérez et al. [12], focusing on communi-
cation protocols and data management for bidirectional
energy exchange. Their work highlights potential applica-
tions for supporting 5G base stations during peak demand
or as complementary power sources to PV systems.
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Artificial Intelligence applications for next-generation
computing have been reviewed by Gill et al. [13], providing
insights into methodologies that could enhance energy pre-
diction and management systems for telecommunications
infrastructure. Alsabah et al. [14] presented a compre-
hensive survey on 6G wireless communications, including
technologies such as massive MIMO and terahertz com-
munications, highlighting the escalating energy challenges
that future networks will face.

Yan et al. [15] demonstrated the application of 5G tech-
nologies for fault diagnosis in distribution networks, illus-
trating how advanced communications can enhance the re-
liability and resilience of power systems. This bidirectional
relationship between energy and communication systems
underscores the importance of integrated approaches to
infrastructure development.

E. Intelligentization of Energy Systems
The application of intelligent technologies to energy

systems promises improved efficiency and reliability. Liang
et al. [17] investigated intelligentization in power industry
transformation through Chinese substation case studies,
providing insights into implementing advanced technolo-
gies for energy savings and operational efficiency applica-
ble to telecommunications power management.

Wen et al. [21] employed Radial Basis Function Neu-
ral Networks (RBFNN) for PV power station predic-
tion, demonstrating the advantages of this architecture
for capturing complex, nonlinear relationships between
environmental factors and energy output.

These studies collectively underscore the importance of
developing accurate prediction models for renewable en-
ergy sources in next-generation communication networks.
They also highlight the potential for AI, advanced op-
timization algorithms, and cross-disciplinary approaches
to enhance the efficiency, reliability, and sustainability of
power management systems in 5G and beyond. However,
there remains a significant gap in research specifically
addressing the unique challenges of predicting PV output
for 5G base stations, which our proposed IFA-BP approach
aims to address.

III. PV Power Prediction Model
A. Overall IFA-BP Architecture

The proposed IFA-BP model integrates an improved
firefly algorithm with a back-propagation neural network
to achieve accurate photovoltaic power prediction for 5G
base stations. The overall architecture and workflow of the
system are illustrated in Figure 1, which shows the com-
plete process from data input to final prediction output.

The architecture consists of five main stages as depicted
in Figure 1:

1) Data Input and Collection: Historical meteorolog-
ical data including irradiation intensity, wind speed,
and atmospheric temperature are collected from 5G
base station locations.

2) Grey Correlation Analysis: Input parameters are
analyzed using grey correlation analysis to identify
the most significant factors affecting PV power out-
put, ensuring optimal feature selection.

3) Data Preprocessing: The selected input data is
normalized and split into training and testing datasets
to prepare for model training.

4) IFA Optimization: The improved firefly algorithm,
enhanced with Circle chaos mapping and nonlin-
ear mutation perturbation, optimizes the connection
weights and thresholds of the BP neural network.

5) BP Neural Network Training and Prediction:
The optimized BP network is trained using the pre-
pared dataset and subsequently used for PV power
prediction, with performance evaluation and model
refinement based on prediction accuracy.

This integrated approach leverages the global search
capabilities of the improved firefly algorithm to overcome
the local minimum problem inherent in traditional BP net-
works, while the systematic workflow ensures robust and
accurate predictions across different weather conditions.

B. BP Neural Network
The BP neural network is a multi-layer feedforward

neural network trained according to the error reverse
propagation algorithm. It generally consists of an input
layer, hidden layer, and output layer, with layers con-
nected by neurons, while neurons within the same layer
are not interconnected [16]. In this paper, a three-layer
BP neural network with one hidden layer is used to build
the model. The input data consists of photovoltaic power
generation influencing factors, and the output represents
the photovoltaic power generation. The structure is shown
in Figure 2.

Network Architecture and Parameters: The BP
neural network configuration used in this study consists
of:

• Input layer: 3 neurons (irradiation intensity, wind
speed, atmospheric temperature)

• Hidden layer: 10 neurons with sigmoid activation
function

• Output layer: 1 neuron (photovoltaic power output)
• Learning rate: 0.01
• Momentum factor: 0.9
• Maximum epochs: 1000
• Training goal (MSE): 1×10−6

Data Preprocessing: All input data are normalized
to the range [0, 1] using min-max normalization to ensure
optimal neural network performance:

xnormalized =
x− xmin

xmax − xmin
(1)

In Figure 2, Vij represents the connection weight from
the i-th node of the input layer to the j-th node of the
hidden layer, Wjk represents the connection weight from
the j-th node of the hidden layer to the k-th node of the
output layer, br represents the threshold of the r-th node

3
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Fig. 1: IFA-BP architecture and workflow for PV power prediction

of the hidden layer, and hk represents the threshold of the
k-th node of the output layer.

Fig. 2: BP neural network structure

The training process of the BP neural network is divided
into two steps: forward propagation of data and backprop-
agation of error values. The input signal passes through
the input layer into the model, the input layer passes data
to the hidden layer, and then through the hidden layer to
the output layer, realizing forward propagation. When the
difference between output power and actual power value
does not meet the target error, it enters the backprop-
agation stage, where the error value is backpropagated
through the output layer, and weights and thresholds
of each node are corrected using the gradient descent
method. This process is repeated until the error value
meets the target error range or the maximum number of

iterations is reached. Through analysis, BP neural net-
works demonstrate self-learning and adaptive capabilities,
achieving good prediction results through training with
historical data [17].

However, the error function usually has multiple ex-
treme points, and selection of initial parameters is random,
so BP networks often tend to fall into local minima,
making it difficult to obtain global optimal solutions.
Therefore, this paper considers using the improved firefly
algorithm to find optimal solutions for connection weights
and thresholds of each node in the neural network be-
fore constructing the BP neural network, then assigning
optimal solutions to the neural network to compensate
for BP neural network shortcomings and improve model
prediction accuracy.

C. Improved Firefly Algorithm
1) Firefly Algorithm: The Firefly Algorithm is a swarm

optimization algorithm that mimics information exchange
between fireflies and their attraction and aggregation be-
havior. The principle of the firefly algorithm is simple,
and corresponding application research has achieved cer-
tain results domestically and internationally. Based on
analysis and comparison with other swarm intelligence
optimization algorithms in previous literature, the firefly
algorithm demonstrates high performance in local search
and performs well in accuracy and optimization speed [18],
[19]. For simplicity, the algorithm rules can be idealized as
the following three points:

4
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1) The gender of all fireflies is not distinguished. Each
firefly can be attracted to any other firefly;

2) The brightness of a firefly is only related to the
objective function. To solve brightness optimization
problems, brightness is proportional to the objec-
tive function value. In some optimization techniques,
methods similar to fitness functions can be used to
establish selectable luminance forms;

3) The attraction of fireflies is only related to firefly
brightness. Darker fireflies will move towards brighter
fireflies. Additionally, relative brightness decreases as
distance between fireflies increases. If a brighter firefly
cannot be found, the firefly will move randomly within
the search space.

From a mathematical perspective, brightness I and force
of attraction β are two extremely important parameters,
both varying with distance r. This can be given by equa-
tions (2) and (3):

I = I0 · e−r2θ (2)

β = β0 · e−r2θ (3)

I0 and β0 are the initial brightness and attraction at dis-
tance 0, respectively, θ is the light absorption coefficient,
and r is the distance between fireflies. The distance r in
equations (2) and (3) is given by equation (4) and denotes
the distance between two fireflies i and j, i.e., the spatial
distance between two points.

ri,j =

√√√√ d∑
k=1

(xi,k − xj,k)
2 (4)

The formula for updating firefly position at each subse-
quent moment is given by equation (5):

xt+1
i = xt

i + β · α ·
(
xt
j − xt

i

)
· e−r2ijθ +Gi (5)

In equation (5), the first term represents firefly position
at iteration t, the second term represents distance between
two fireflies due to their attractiveness, and the last term
represents random perturbation of the firefly, which is
conducive to enlarging the search area and avoiding pre-
mature algorithm stagnation. Where α is the perturbation
step factor and is a constant between 0 and 1, and Gi is
the change amount that obeys Gaussian distribution. If
firefly brightness is the same, fireflies move randomly, and
through continuous firefly position updates, the group will
eventually gather at the position of the firefly with highest
brightness to achieve optimal goals. However, sometimes
fireflies get stuck in local optima and therefore don’t per-
form well in global searches. Additionally, firefly algorithm
search relies entirely on random motion, so convergence
cannot be guaranteed.

2) Firefly Population Initialization Based on Circle
Chaos Mapping: Population initialization determines the
location, distribution, and fitness of the initial population.
In the original firefly algorithm, because there are no
prior conditions available, random distribution is used for
population initialization, which may lead to uneven distri-
bution of firefly individuals and eventually result in local
optimality. Chaos is a nonlinear system that uses deter-
ministic equations to obtain motion states with random-
ness. It has characteristics of ergodicity, non-periodicity,
and sensitivity to initial values, making it an effective
optimization tool. In optimization terms, chaotic reflection
can be used as an alternative to pseudorandom number
generators. Therefore, to solve the above problems, this
paper uses Circle chaos mapping to generate the initial
firefly population.

Circle mapping is defined as follows:
xi+1 = xi + 0.5 · (0.2 · sin (2πxi) + 1) (6)

The process of generating a Circle chaotic mapping
sequence in a feasible domain is as follows:

1) The initial value x0 is randomly generated and used
as a marker group, z1 = x0.

2) Iterate according to Eq. (6) to produce a chaotic
sequence.

3) If the maximum number of iterations is reached, go
to step 5, otherwise jump to step 2.

4) Press the formula xi = zj +η to regenerate the initial
value of iteration, i = j = 1, η is a constant in the
range of 0 to 1 that obeys normal distribution, j =
j + 1, go to step 2.

5) At the end of the run, the final sequence is used as
the initial population of fireflies.

Compared with randomly distributed firefly popula-
tions, the improved population can make initial position
distribution more uniform, expand search diversity of
fireflies, improve global search ability, avoid premature
convergence, help obtain global optimal solutions, and
further improve algorithm optimization efficiency.

3) Nonlinear Mutational Perturbation: The location of
the optimal firefly individual continuously affects the dis-
tribution of other individuals in the population, and this
mechanism is helpful for FA optimal solutions. However,
when the number of iterations is small, this mechanism
will cause FA to quickly enter the local search stage, unable
to find optimal solutions, and make the algorithm fall
into local optima. Therefore, this paper adds nonlinear
mutation perturbation to the optimal firefly individual,
so that the optimal individual changes with a certain
probability, enabling FA to avoid falling into local optima.
The expression for perturbation factor N is shown in Eq.
(7).

N t
rand =

⌊
π

2
·
(
1− tan

(
0.5π(1− t

tmax
)

))
· rand(1)

⌋

(7)
The current and maximum iterations are denoted by t

and tmax, respectively. rand(1) is a random number with
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value range [0,1]. The variation range of random perturba-
tion gradually decreases, ensuring that local search accu-
racy of IFA is not affected. The improved basic algorithm
flow for FA is shown in Figure 3.

Fig. 3: Improved Firefly Algorithm flowchart

IFA Parameter Selection and Justification: The
IFA parameters were selected based on preliminary sen-
sitivity analysis and established guidelines from swarm
intelligence literature:

• Population size: 20 fireflies (balance between diversity
and computational efficiency)

• Maximum iterations: 200 (sufficient for convergence
based on benchmark testing)

• Step size α: 0.2 (provides adequate exploration while
maintaining convergence)

• Maximum attraction β0: 1.0 (standard value ensuring
effective attraction)

• Light absorption coefficient γ: 1.0 (moderate absorp-
tion for balanced local-global search)

D. Selection of Parameters
For statistical prediction methods, accurate and detailed

historical power generation data is a necessary condition
to ensure PV output power prediction accuracy. How-
ever, power generation of 5G photovoltaic base stations is

greatly affected by module characteristics, panel installa-
tion angle, altitude, and weather, exhibiting randomness
and intermittency characteristics. Too much input data
not only increases prediction model training time but
may also lead to decreased prediction accuracy as data
increases, making it difficult to fully consider all perfor-
mance parameters in real-world engineering applications.
This paper uses grey correlation analysis to analyze the
influence of meteorological factors on photovoltaic power
forecasting. The calculation process is as follows:

Eq. (8) defines the difference correlation matrix between
comparison series and reference series:

∆i,j(k) = si(k)− sj(k), i = 1, 2, . . . ,m; k = 1, 2, . . . , n
(8)

In the expression: si(k) is the k-th eigenvalue of the i-
th comparison sequence, and sj(k) is the k-th eigenvalue
of the j-th reference sequence (k = 1, 2, . . . ,m). m is the
dimension of the eigenvector, n is the number of samples.
The correlation coefficient between the i-th reference se-
quence and comparison series γij(k) is shown in equation
(9):

γij(k) =
δmin
i (k) + ∆ij(k)

δmax
i (k) + ∆ij(k)

(9)

where min∆i(k) and max∆i(k) are the minimum and
maximum values of the difference between two sequences,
and δ is the resolution coefficient (in this case δ = 0.5).
Finally, the grey correlation between the i-th comparison
sequence and reference sequence is shown in Eq. (10).

ri =
1

n

n∑
k=1

γij(k) (10)

Two sets of historical power generation data of 5G pho-
tovoltaic base stations at Guangxi University were selected
for sunny days and cloudy weather. The comparison series
consists of four data types: irradiation intensity, wind
speed, atmospheric temperature, and relative humidity,
and the reference series is the actual photovoltaic output
power. The results are shown in Table I.

TABLE I: Grey correlation degree of individual parame-
ters

Historical power Data Type Grey
generation data Relevance

CLOUDY
relative humidity 0.3718
temperature 0.5792
Irradiation intensity 0.9491
wind velocity 0.6415

SUNNY
relative humidity 0.3617
temperature 0.5768
Irradiation intensity 0.9185
wind velocity 0.5794

As can be seen from Table I, grey correlation between
both groups of irradiation intensity is above 0.9, indicating

6
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that irradiation intensity has the strongest correlation
with photovoltaic output power. Grey correlation between
relative humidity and PV output power is around 0.35
in both data sets, indicating that the correlation between
relative humidity and PV output power is the lowest. Grey
correlation between temperature and wind speed is rela-
tively low but still achieves certain correlation. Therefore,
input variables for the prediction model are determined
to be irradiation intensity, wind speed, and atmospheric
temperature.

E. IFA-BP PV Power Prediction Model
The improved firefly algorithm has the unique advan-

tage of updating the position by the brightness and at-
tractiveness of the firefly and moving step by step towards
the global optimal value, and quickly converging near
the optimal value. In this model, IFA mainly optimizes
the connection weights and thresholds in the BP neural
network, and assigns values to the BP neural network
under the condition that the optimal value of the param-
eters is obtained, so as to make short-term prediction of
photovoltaic power. Before training, import the samples
of the training set and test set of PV power prediction,
and select the sigmoid function as the activation function.
After training, the actual data of the test set is compared
with the predicted PV power data. A specific flowchart
for predicting PV output power using the IFA-BP model
is shown in Algorithm 1.

Algorithm 1: Prediction Process Algorithm

1: START
2: Load historical photovoltaic data
3: Split data into training and test sets
4: Initialize BP network structure
5: Initialize weights and thresholds randomly
6: Initialize parameters based on Circle Chaos Map
7: while not terminated do
8: for each firefly do
9: Update firefly position and brightness

10: Calculate the objective function value
11: if a better solution is found then
12: Update current optimal solution
13: end if
14: end for
15: if termination condition is met then
16: break
17: end if
18: end while
19: Input test set to model
20: Predict photovoltaic power generation
21: STOP

IV. Simulation results of IFA-BP model
1) Experimental Setup and Reproducibility: Based on

the base station operation data of the West Campus

of Guangxi University in 2021, the prediction perfor-
mance of the IFA-BP model is verified in MATLAB
R2021a software. All simulations were conducted on a
Windows 10 system with Intel Core i7-9700K processor
and 16GB RAM. To ensure reproducibility, the random
seed was set to 42 for all algorithms using MATLAB’s
rng(42,'twister') function.

The data is selected for October and December, when
weather conditions are complex, with sunny days on Oc-
tober 15 and rainy days on December 17. The training
data is selected from the historical data of the week before
the prediction date, which is October 8∼14 and December
10∼16, respectively. The study time is 8:00∼17:00 every
day, with an interval of 1 hour.

2) Algorithm Configuration: The detailed configuration
parameters for reproducibility are as follows:

IFA-BP Model Parameters:
• Maximum number of iterations: 200
• Population size: 30
• Absorption coefficient (γ): 1.0
• Attractiveness coefficient (β0): 1.0
• Randomization parameter (α): 0.2
• Circle chaos mapping parameter: a = 0.5
• Mutation probability: 0.1
• BP learning rate: 0.01
• BP momentum: 0.9
• Hidden layer neurons: 10
The inputs of the prediction model are irradiation

intensity (W/m2), wind speed (m/s), and atmospheric
temperature (◦C), and the output of the prediction model
is the photovoltaic output power (kW).

3) Statistical Analysis Framework: To ensure statistical
significance, each experiment was repeated 30 times with
different random initializations. The average percentage
error (MAPE) and coefficient of determination (R2) were
used as the evaluation indexes, where Xr was the actual
value, Xp was the predicted value, and s was the number
of sampling points for photovoltaic power generation.

A. Four Benchmark Functions
The performance of the improved firefly algorithm was

first validated using four standard benchmark functions.
Each function was tested 30 times with different random
seeds, and statistical measures were calculated.

1) Sphere

f(x) =
d∑

i=1

x2
i (11)

• Search Range: [−100, 100]
• Optimal Value: 0

2) Rosenbrock

f(x) =

d−1∑
i=1

(
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
)

(12)

• Search Range: [−30, 30]
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• Optimal Value: 0
3) Rastrigin

f(x) =
d∑

i=1

(
x2
i − 10 cos (2πxi)

)
(13)

• Search Range: [−5.12, 5.12]
• Optimal Value: 0

4) Griewank

f(x) = 1 +
1

4000

d∑
i=1

x2
i −

d∏
i=1

cos
(
xi√
i

)
(14)

• Search Range: [−100, 100]
• Optimal Value: 0

TABLE II: Statistical Results of the Four Benchmark
Functions (30 runs)

Function Algorithm Best Worst Mean ± Std Dev 95% CI Success
Rate

F1: Sphere FA 0 5.6242e-10 (2.81±1.23)e-10 [2.36e-10, 3.26e-10] 100%
IFA 0 8.2836e-11 (1.52±0.87)e-11 [1.20e-11, 1.84e-11] 100%

F2: Rosenbrock FA 0 6.2348 1.89±1.45 [1.35, 2.43] 60%
IFA 1.7525e-04 1.7290 0.45±0.38 [0.31, 0.59] 87%

F3: Rastrigin FA 0 20.8941 8.94±5.67 [6.83, 11.05] 23%
IFA 0 10.1287 2.15±2.89 [1.07, 3.23] 77%

F4: Griewank FA 0 0.0017 (4.25±2.78)e-04 [3.21e-04, 5.29e-04] 43%
IFA 0 1.2347e-04 (1.89±1.45)e-05 [1.35e-05, 2.43e-05] 90%

Note: CI = Confidence Interval, Success Rate = percent-
age of runs achieving global optimum (tolerance: 1e-06)

1) PV Power Prediction Results: In this paper, three
models are used to evaluate the effectiveness of PV output
power predictions, namely the BP model, the FA-BP
model, and the IFA-BP model. The prediction results are
based on 30 independent runs for each model to ensure
statistical validity.

Fig. 4: Performance comparison during sunny days

TABLE III: Statistical Performance Analysis for Sunny
Day Conditions (30 runs)

Model MAPE (%) R2 RMSE (kW) MAPE R2

95% CI
BP 7.80 ± 0.45 0.9595 ± 0.0023 0.623 ± 0.028 [7.64, 7.96] [0.9587, 0.9603]
FA-BP 7.89 ± 0.52 0.9817 ± 0.0018 0.445 ± 0.024 [7.70, 8.08] [0.9810, 0.9824]
IFA-BP 4.79 ± 0.31 0.9895 ± 0.0012 0.287 ± 0.018 [4.68, 4.90] [0.9891, 0.9899]

Figure 4 shows the prediction of a sunny day for each
model compared to the actual value, while Figure 5 shows
the absolute error between the three prediction models,
where absolute error (AE) is defined as:

Fig. 5: AE comparison during sunny days

R2 = 1−
∑s

i=1 (XP (i)−XR(i))
2

∑s
i=1

(
XP (i)−XP

)2 (15)

MAPE =
100

s

s∑
i=1

∣∣∣∣
XR(i)−XP (i)

XR(i)

∣∣∣∣ (16)

∆X = XR −XP (17)

It can be found that the photovoltaic output power
reaches its peak at about 12∼14 on a sunny day, and
the overall trend of the curve is stable and regular. This
is due to the fact that under sunny conditions, various
meteorological factors change smoothly, and the output
power of photovoltaics changes slowly with light intensity
and atmospheric temperature.

Statistical analysis of hourly predictions shows: In the
morning period (8:00∼11:00), IFA-BP demonstrates 34%
lower mean absolute error compared to BP and 28% lower
than FA-BP. During the peak period (12:00∼14:00), IFA-
BP maintains consistent performance with 89% lower vari-
ance in predictions. In the evening period (15:00∼17:00),
IFA-BP shows superior stability with standard deviation
of 0.18 kW compared to 0.47 kW for BP. The IFA-
BP model showed good fitting results throughout the
prediction period, and the absolute error value was the
lowest, ranging from [−0.5, 0.4], especially in the medium-
term forecast.

Fig. 6: Performance comparison during cloudy days
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Fig. 7: AE comparison during cloudy days

TABLE IV: Statistical Performance Analysis for Cloudy
Day Conditions (30 runs)

Model MAPE (%) R2 RMSE (kW) MAPE 95% CI R2 95% CI
BP 21.98 ± 1.23 0.9291 ± 0.0034 1.245 ± 0.067 [21.54, 22.42] [0.9279, 0.9303]
FA-BP 23.28 ± 1.45 0.9495 ± 0.0028 1.089 ± 0.054 [22.75, 23.81] [0.9485, 0.9505]
IFA-BP 12.20 ± 0.87 0.9793 ± 0.0019 0.672 ± 0.039 [11.88, 12.52] [0.9786, 0.9800]

Figures 6 and 7 show the simulation results of PV out-
put power prediction under multi-cloud conditions using
three prediction models. As can be seen from Figure 6, the
PV output power curve fluctuates greatly and the regular-
ity is weak when it is cloudy. Moreover, there is no clear
linear relationship between output power and time. This
is due to the drastic changes of various external factors
under cloudy conditions, so that the light intensity, wind
speed and atmospheric temperature change significantly
in a short period of time, resulting in the base station
photovoltaic power generation system is not stable enough.

Statistical analysis reveals that IFA-BP shows 67%
lower variance compared to BP model. The error distribu-
tion for IFA-BP follows normal distribution (Shapiro-Wilk
test, p = 0.143), while BP and FA-BP show significant
skewness. As a robustness measure, IFA-BP maintains
performance within 2σ bounds 94% of the time compared
to 78% for BP. The AE for cloudy weather is shown in
Figure 7. In the initial stage of prediction, the error of
the FA-BP model is large. In the middle and late stages
of the forecast, the BP model fluctuates greatly, and the
maximum error is already about to reach 1.8 kW. However,
the IFA-BP has an error of [−1, 0.75], which is the smallest
of the three prediction models.

2) Statistical Significance Testing: Paired t-tests were
conducted to verify the statistical significance of perfor-
mance differences between models (α = 0.05):

Sunny Day Conditions:
• IFA-BP vs BP: p < 0.001 (highly significant)
• IFA-BP vs FA-BP: p < 0.001 (highly significant)
• FA-BP vs BP: p = 0.742 (not significant)
Cloudy Day Conditions:
• IFA-BP vs BP: p < 0.001 (highly significant)
• IFA-BP vs FA-BP: p < 0.001 (highly significant)
• FA-BP vs BP: p = 0.089 (marginally significant)
The final results show that the forecast error of cloudy

weather is larger than that of sunny day. Compared with

TABLE V: Computational Efficiency Analysis (30 runs)

Model Training Convergence Memory
Time (s) Iterations Usage (MB)

BP 12.3 ± 2.1 147 ± 23 45.2 ± 3.1
FA-BP 28.7 ± 4.2 112 ± 18 52.8 ± 4.5
IFA-BP 31.2 ± 3.8 89 ± 15 54.1 ± 4.2

the other three models, the IFA-BP model has the small-
est prediction error and proves that it can show better
prediction results under different weather conditions. The
IFA-BP model demonstrates faster convergence with fewer
iterations, justifying the slightly increased computational
overhead.

TABLE VI: Performance Evaluation of predictive models
(Mean values from 30 runs)

Weather Forecasting MAPE (%) R2

Models
CLOUDY FA-BP 23.28 ± 1.45 0.9495 ± 0.0028

BP 21.98 ± 1.23 0.9291 ± 0.0034
IFA-BP 12.20 ± 0.87 0.9793 ± 0.0019

SUNNY FA-BP 7.89 ± 0.52 0.9817 ± 0.0018
BP 7.80 ± 0.45 0.9595 ± 0.0023
IFA-BP 4.79 ± 0.31 0.9895 ± 0.0012

As shown in Table VI, each model predicted significantly
better on sunny days than on cloudy days. For example,
the MAPE value for IFA-BP is 4.79% on a sunny day and
12.20% on a cloudy day. In addition, the IFA-BP model
has the lowest MAPE values for both sunny and cloudy
weather. The R2 of each model on a sunny day reached
more than 95%. However, in cloudy weather, the R2 of
each model is lower relative to sunny days. Of all the
models, only the IFA-BP model achieved more than 97%
on both sunny and cloudy days. In summary, the IFA-
BP photovoltaic power prediction model proposed in this
paper can achieve ideal prediction performance and good
prediction accuracy in both sunny and cloudy weather.
The simulation results show that the IFA-BP model has
good prediction accuracy and anti-interference ability, and
also proves that the prediction model proposed in this
paper is effective.

V. Conclusion
This research presents an innovative approach to pre-

dicting photovoltaic power generation for 5G base stations
using an Improved Firefly Algorithm-Back Propagation
(IFA-BP) neural network model. Our findings demon-
strate that the IFA-BP model consistently outperforms
traditional BP and FA-BP models in terms of prediction
accuracy and stability across varying weather conditions.
The use of Circle chaos mapping for population initializa-
tion and nonlinear mutational perturbation significantly
enhances the global search capability of the Firefly Algo-
rithm, leading to more accurate predictions. Furthermore,
the application of grey correlation analysis proves effective
in selecting the most relevant input parameters, contribut-
ing to the model’s improved performance.
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Notably, the proposed model shows remarkable re-
silience in challenging weather conditions, maintaining
high accuracy even during cloudy days. The IFA-BP
model’s superior performance, achieving a Mean Absolute
Percentage Error (MAPE) of 4.79 ± 0.31% and an R2

of 0.9895 ± 0.0012 for sunny days, and a MAPE of
12.20 ± 0.87% and an R2 of 0.9793 ± 0.0019 for cloudy
conditions, suggests its potential for practical application
in optimizing power management systems for 5G base
stations. Statistical significance testing confirms that these
improvements are not due to random variation, with p <
0.001 for all comparisons between IFA-BP and baseline
models.

These results underscore the effectiveness of our ap-
proach in addressing the energy consumption challenges of
5G networks while promoting the integration of sustain-
able energy sources. The IFA-BP model provides several
key advantages:

• Enhanced prediction accuracy: The model signif-
icantly reduces prediction errors compared to con-
ventional approaches, enabling more reliable power
management.

• Weather adaptability: Unlike previous models,
IFA-BP maintains high performance across diverse
weather conditions, a critical feature for practical
deployment.

• Optimization efficiency: The improved algorithmic
structure reduces computational overhead while im-
proving convergence rates and solution quality.

• Parameter selection: The grey correlation anal-
ysis framework provides a systematic approach to
identifying the most influential meteorological factors
affecting PV output.

• Statistical robustness: The model demonstrates
consistent performance across multiple runs with low
variance, ensuring reliable operation in practical ap-
plications.

However, this study has certain limitations that should
be acknowledged. The evaluation is based on only two days
of testing data (one sunny and one cloudy day), which,
while demonstrating the method’s potential, somewhat
limits the generalizability of the results. A more com-
prehensive evaluation across diverse weather conditions,
seasonal variations, and extended time periods would
strengthen the validation of the proposed approach.

Future research could explore the model’s performance
across a broader range of environmental conditions, its
scalability for larger network implementations, and the
integration of this prediction model with real-time power
management systems to further enhance the energy ef-
ficiency of 5G infrastructure. Additional directions may
include:

• Extended evaluation: Conducting comprehensive
testing across multiple seasons, various weather pat-
terns, and extended time periods to better establish
the model’s generalizability and robustness

• Comparison with modern forecasting methods:

Benchmarking the IFA-BP model against state-of-
the-art forecasting techniques such as Long Short-
Term Memory (LSTM) networks, Gated Recurrent
Units (GRU), Temporal Convolutional Networks
(TCN), ensemble methods like XGBoost and Light-
GBM, and specialized time series forecasting tools like
Prophet

• Extending the prediction horizon from hourly to daily
or weekly forecasts

• Incorporating additional weather parameters such as
humidity, cloud cover density, and air quality indices

• Developing hybrid models that combine the IFA-BP
approach with other advanced techniques such as
wavelet transforms or deep learning architectures

• Implementing the model in edge computing envi-
ronments to enable distributed energy management
across multiple base stations

• Conducting long-term validation studies to assess
model stability and performance degradation over
extended periods

In summary, this work contributes to the growing body
of research on sustainable energy integration in telecom-
munications infrastructure, providing a robust and accu-
rate prediction framework that can serve as a foundation
for intelligent power management in next-generation wire-
less networks.
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Model-Based Comparison of Nuclear and Renewable 
Energy Based Strategies for Slovenia

Mihael Boštjan Končar, Domen Hojkar, Boštjan Drobnič, Mihael Sekavčnik, Mitja Mori 

Summary —Decarbonising the primary energy sector is essential 
for achieving a sustainable electricity supply and requires a transi-
tion away from fossil fuels. Coal- and gas-fired plants are expected 
to remain only as strategic reserves, operating during emergencies 
or other critical situations. Two development strategies defined in 
Slovenia’s National Energy and Climate Plan are evaluated: a nucle-
ar-based pathway and a renewable-only pathway. A zero-dimensional 
energy system model with hourly resolution was applied, integrating 
nuclear, thermal, hydro, wind, solar, and pumped hydro storage to 
represent projected 2040 conditions. System performance was asse-
ssed through grid stability, carbon intensity, import dependency, 
and spatial efficiency. The nuclear pathway provided stable baseload 
generation, minimised fluctuations, and reduced reliance on storage 
and imports. It achieved 113 kgCO₂eq/MWh with land use of 2.4 km²/
TWh. The renewable-only pathway showed high variability, surplu-
ses exceeding several gigawatts, and greater balancing needs, resul-
ting in 148 kgCO₂eq/MWh and land use of 9.1 km²/TWh. An additi-
onal, nuclear-only variant further demonstrated that one reactor can 
replace several gigawatts of solar capacity while maintaining stability 
and reducing emissions. The results question the relevance and fea-
sibility of renewable-only strategies and confirm the crucial role of 
nuclear power in ensuring secure, low-carbon electricity supply.

Keywords — energy transition, energy system modelling, energy 
flows, environmental impact analysis 

I. Introduction

Energy system modeling is essential for evaluating energy 
supply strategies. Hourly-resolution models capture short-
term fluctuations in supply and demand, offering insights 

into grid reliability and energy security—factors not fully addre-
ssed by integral energy balances. Such modeling is particularly 
important for systems dominated by renewable energy sources 
(RES), where variability challenges system stability and requires 
flexible solutions, such as storage or dispatchable load.

A zero-dimensional energy system model was developed to 
compare nuclear and renewable-based strategies. The model si-

mulates hourly energy flows, integrating nuclear, thermal, solar, 
wind, and hydropower sources, along with pumped-hydro sto-
rage, under the current Slovenian power system and National 
Energy and Climate Plan (NEPN) [1] projections.

System performance was assessed based on grid stability, gre-
enhouse gas emissions, import dependency, and spatial efficiency. 
The analysis provides an objective comparison of nuclear and re-
newable strategies, highlighting their respective roles in a stable, 
sustainable, and economically -feasible electricity supply.

II. Model Description
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II. MODEL DESCRIPTION  

The power supply system consists of three primary 
entities: consumers, producers, and prosumers. Consumers 
represent the system’s load, encompassing industrial 
facilities, households, and electric vehicle charging 
stations. Producers serve as energy sources, including 
various types of power plants. Prosumers, a hybrid 
category, can function as either consumers or producers 
depending on system conditions. This category includes 
energy storage units and cross-border energy flows [2]. 

Electric power transmission in the system follows the 
fundamental principle that energy can only flow when 
there is a difference in thermodynamic potential between 
producers and consumers. Thus, the system operates by 

balancing energy flows rather than supplying consumers 
independently [2]. This results in the core governing 
equation of the model: 
∑ 𝑃𝑃i(𝑡𝑡)i + ∑ 𝐸𝐸i̇ (𝑡𝑡)i = 0; ∀𝑡𝑡 ∈ [[0,  8760 h]], (1) 

where 𝑃𝑃 represents the electrical power supplied by 
producers, and 𝐸̇𝐸 accounts for energy flows related to 
consumption and prosumption, having positive or negative 
sign for energy production and consumption respectively. 
Index i presents individual energy entities. The basic 
operation of the modeled system is graphically depicted in 
Fig. 1. 

 
Figure 1. Basic operation of the modeled system 

A. Energy Flow Modeling and System 
Discretization 

The model discretizes the system temporally, using an 
hourly resolution based on the available input data [3]. It 
should be noted that the approach remains adaptable to 
finer timescales, provided suitable input data resolution. 

Each energy supply technology is modeled according to its 
characteristics, while consumer demand serves as a 
boundary condition and was adopted from the grid 
operator database [3]. Power plants and storage facilities 
are represented using zero-dimensional models, focusing 
on integral energy balances. These models leverage 
empirical correlations or black-box approaches, 
prioritizing computational efficiency over local process 
resolution. Such an approach is ideal for system-level 
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studies where energy flow analysis and interactions 
between system components are paramount. The model is 
implemented in Python software environment. 

B. Modeling Dispatchable and Non-Dispatchable 
Power Plants 

Nuclear Power Plants 

Nuclear power plants (NPPs) typically operate in baseload 
mode, maximizing power output within the constraints of 
their fuel cycle. Although modern NPPs allow load-
following operation, economic considerations favor 
continuous operation at rated power [4]. Consequently, the 
model assumes constant nuclear power generation: 
𝑃𝑃NPP(t) =  const. (2) 

It is important to note that next-generation nuclear reactors, 
including Small Modular Reactors (SMRs) and Advanced 
Micro Reactors (AMRs), demonstrate enhanced load-
following capabilities, which are comparable to those of 
conventional fossil-fueled thermal power plants [4]. 
Accordingly, the model should be refined to accurately 
represent these advanced operational characteristics. 

Wind and Solar Power Plants 

Under Slovenian and European regulations, renewable 
sources such as wind and photovoltaic (PV) power plants 
receive priority dispatch [5]. Their power output is 
determined by the available resource potential: 
𝑃𝑃w(𝑡𝑡) = 𝑃𝑃w, pot(𝑡𝑡), 𝑃𝑃PV(𝑡𝑡) = 𝑃𝑃PV,pot(𝑡𝑡).  (3) 

Consequently, these sources inject their entire available 
power (potential) into the system, irrespective of real-time 
demand-supply balance. 

Hydropower Plants 

Run-of-river hydropower plants (HPPs) provide flexible 
generation, rapidly adjusting their output to stabilize grid 
frequency and balance stochastic renewable fluctuations. 
Their power output is modeled using the fundamental 
hydraulic power equation: 
𝑃𝑃HPP = 𝜂𝜂HPP 𝜌𝜌H20 𝑉𝑉ṙ 𝐻𝐻r 𝑔𝑔, .  (4) 

where 𝜌𝜌H20 is water density, 𝑔𝑔 is gravitational 
acceleration,  𝑉𝑉ṙ  is volumetric flow rate, 𝐻𝐻r is the available 
hydraulic head, and 𝜂𝜂HPP is the plant efficiency. Due to 
computational constraints, actual power potential of 
modeled HPP is determined using empirical data from a 
reference hydropower plant (HPP Arto-Blanca), employing 
a cubic regression model: 

𝑃̂𝑃HPP = 𝐶𝐶1𝑉̂̇𝑉r𝐻̂𝐻r + 𝐶𝐶2 𝑉̂̇𝑉r 𝐻̂𝐻r
2 + 𝐶𝐶3 𝑉̂̇𝑉r

2 𝐻̂𝐻r + 𝐶𝐶4 𝑉̂̇𝑉r 𝐻̂𝐻r
3 +

𝐶𝐶5 𝑉̂̇𝑉r
3 𝐻̂𝐻r,  (5) 

where 𝑃̂𝑃HPPis normalised HPP electrical power, 𝑉̂̇𝑉r 
normalized volumetric flow rate, 𝐻̂𝐻r normalised hydraulic 
head and 𝐶𝐶1 to 𝐶𝐶5 are empirical model parameters. The 
quantities are normalized based on the modeled HPP 
nominal parameters. 

The operation of run-of-river hydropower plants (HPPs) is 
modeled as a dispatchable source without storage, which 
represents a deviation from real-world conditions where 
such dams offer limited storage capacity [6]. In practice, 

run-of-river dams can provide hourly to daily energy 
storage; however, within the Slovenian energy system, this 
capacity is relatively small, typically allowing for only a 
few hours of storage. Given this constraint, storage effects 
were considered negligible and thus omitted from the 
model.  

The power output from the HPPs was therefore determined 
based on instantaneous power potential and system 
demand. This approach ensures that HPPs do not inject 
power into the system when demand is absent, effectively 
simulating the diversion of excess river flow through 
overflow gates. The HPP model also imposes a minimum 
operational power limit of 40 % of nominal capacity, 
meaning that if the current power potential is lower HPP 
remains offline. 

Thermal Power Plants 

Coal-fired thermal power plants (TPPs) provide a 
significant portion of Slovenia’s electricity. Their 
operation follows a trapezoidal generation profile, 
adjusting gradually to match demand variations. Technical 
operational constraints include: nominal rated power 
(typically for SLO ~542 MWe) ramp rate (typically for 
SLO ~10 MWe/min), operating range (typically for SLO 
~42%–110% of rated nominal power). Although the 
technical constraints are well known, the real load 
variation of TPPs are primarily dictated by energy prices 
and contractual agreements rather than solely by fuel 
availability and technical constraints [7]. As economic 
factors significantly influence dispatch, predicting actual 
generation without them is not possible. Therefore, the 
model employs the time-dependent TPP generation profile 
based on the typical operation of the Slovenian power 
system, scaled by a factor 𝑘𝑘𝑇𝑇𝑇𝑇 , which defines the 
contribution of TPPs to total power generation: 
𝑃𝑃TPP(𝑡𝑡) = 𝑘𝑘TPP 𝑃𝑃TPP, SLO(𝑡𝑡),  (6) 

where 𝑃𝑃TPP, SLO(𝑡𝑡) represents the data obtained from grid 
operator. 

Gas Turbines 

Gas turbines, operating on sub-hourly timescales, are 
unsuitable for the model's resolution and were thus 
included in imported energy flows. 

C. Energy Storage Modeling 

Slovenia’s energy storage infrastructure comprises battery 
storage systems and Pumped Hydro Storage (PHS). While 
battery storage operates on sub-hourly timescales, making 
it unsuitable for this study, PHS provides bulk energy 
storage with high round-trip efficiency (~78%) [6]. 

The PHS model is based on the only PHS in Slovenia, PHS 
Avče [8] and incorporates several simplifications: 

i. in pumping mode PHS operates only at nominal 
power; 

ii. efficiency of individual system components, 
excluding turbomachine internal efficiency, 
remains constant; 

iii. in turbine mode PHS operates between 30% to 
100% of nominal power; 
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iv. head level variations due to reservoir depletion 
are neglected; 

v. internal turbine efficiency is interpolated from 
empirical data for reference Francis turbine. 

A detailed description of the PHS model is beyond the 
scope of this paper; however, its key characteristics are 
summarized as follows: 

− the model incorporates a finite storage capacity 
that is charged and discharged during PHS 
operation; 

− pumping efficiency is assumed constant, while 
turbine mode accounts for efficiency variations 
based on flow conditions and turbomachine 
characteristics; 

− pumping operation is initiated only when excess 
energy flow in the system meets or exceeds the 
nominal pump power, at which point it operates at 
a constant nominal power. 

D. System Energy Balance 

The energy balance of the system is constructed in multiple 
steps, incorporating different power generation and storage 
components to ensure proper alignment of energy supply 
and demand at each time step. The steps flow: 

i. Energy balance after priority dispatch power 
plants: 

Δ𝐸̇𝐸sys,1 = 𝑃𝑃prod − 𝐸̇𝐸load = 𝑃𝑃JE + 𝑃𝑃w + 𝑃𝑃PV − 𝐸̇𝐸Load (7) 

This step accounts for nuclear power and renewable 
sources (wind and solar) with priority dispatch. 

ii. Energy balance after including thermal power 
plants: 

Δ𝐸̇𝐸sys,2 = Δ𝐸̇𝐸sys,1 + 𝑃𝑃TPP(𝑡𝑡) (8) 

This incorporates the contribution of dispatchable coal-
fired thermal power plants, which adjust generation 
according to demand and economic constraints. 

iii. Energy balance after including hydropower 
plants: 

Δ𝐸̇𝐸sys,3 =

{
Δ𝐸̇𝐸sys,2 + 𝑃𝑃HPP, pot; if demand exceeds potential

0; if surplus power in system 
Δ𝐸̇𝐸sys,2; if partial HPP load is required

. (9) 

This step introduces run-of-river hydropower generation, 
balancing residual loads. 

iv. Final energy balance after including pumped 
hydro storage: 

Δ𝐸̇𝐸bor
t = Δ𝐸̇𝐸sys,4

𝑡𝑡 = Δ𝐸̇𝐸sys,3
𝑡𝑡 + 𝑃𝑃PHS

𝑡𝑡 (Δ𝐸̇𝐸sys,3
𝑡𝑡 ,  𝐸𝐸stored

𝑡𝑡−1 ), (10) 

where 𝑃𝑃HPP  denotes the modeled PHS power, which can 
be positive (generation) or negative (consumption), 
depending on the system energy balance Δ𝐸̇𝐸sys,3 and the 
reservoir energy state 𝐸𝐸stored at the previous time step 𝑡𝑡 −
1. 

This includes PHS operation. The final energy flow 
balance Δ𝐸̇𝐸bor defines the required exchange of energy 
across system boundaries at given time step 𝑡𝑡, representing 
imports and exports. 

III. BOUNDARY CONDITIONS 

The modeled energy system is based on the current state of 
the Slovenian power system and selected development 
projections from the National Energy and Climate Plan 
(NEPN) [1]. Projections for 2040 were analyzed under two 
scenarios: Renewable and Nuclear Scenario (RS and NS). 

The NPP size is based on Krško NPP expansion plans. 
According to [9] 1200–1600 MWe PWR is optimal for 
grid stability, with the model assuming a 1200 MWe in NS. 
Continued operation of the existing unit (696 MWe) is also 
foreseen in the model for both scenarios. 

The boundary conditions for modeled TPPs assume an 
installed capacity of 542 Mwe (𝑘𝑘TPP = 0.745 ) for both 
scenarios, reflecting TPP Šoštanj, Unit 6. 

The run-of-river HPP model is based on volumetric river 
flow 𝑉̇𝑉r  and hydraulic head 𝐻𝐻r. HE Formin [10], 
Slovenia’s largest HPP, was selected as the reference, with 
a nominal power of 116 MWe. Hourly river flow data were 
interpolated from 2020 daily measurements at the Drava-
Formin hydrological station [11]. Due to unavailable 
measured values, 𝐻𝐻r was assumed to be 29 m, introducing 
minimal deviation given stable water level regulation in 
HPPs. The modeled 1276 MWe hydropower capacity 
(Slovenia’s existing HPP system: 1130 MWe) 
approximates 11 parallel HE Formin units under identical 
hydrological conditions. While sufficient for this study, 
detailed analyses would require individual boundary 
conditions for each HPP. The same HPP capacity is 
assumed for both scenarios as foreseen in [1]. 

Two PHS units were modeled within the system, aligning 
with projections in [1].  

The energy potential of wind and solar power was modeled 
using meteorological data, with a single reference location 
selected for each. This simplification deviates from reality, 
as large-scale deployment at a single site is impossible, due 
to low energy density. Furthermore, conditions 
significantly vary by location. However, the reference sites 
were chosen for optimal wind and solar potential in 
Slovenia, inherently favoring renewable energy sources. 

Wind speed data were obtained from the ARSO automatic 
meteorological station database [11] for Škocjan na Krasu 
and adjusted to turbine rotor height with exponential wind 
profile model. The reference wind turbine, Enercon 
66/18.70 [12], was used with its technical characteristics to 
calculate the actual wind energy potential 𝑃𝑃w, pot. The 
model assumes 81 wind turbines (installed power 146 
MWe) in NS and 293 turbines in RS (527.4 MWe), aligning 
with [1]. 

Similarly, solar power potential 𝑃𝑃PV,pot was calculated 
using 2020 surface solarization data for Koper [13]. The 
model assumes 3.6 million panels (1,602 MWe) in the NS 
scenario, reflecting current installed capacity in Slovenia, 
and 18 million panels (8 GWe) in the RS scenario, as 
projected in [1]. 

Hourly consumption data were obtained from the 
Slovenian grid operator’s database [3], with 2020 as the 
reference year. Consumption was then scaled by 1.525 to 
align with the 2040 energy consumption projection [1]. 
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iv. head level variations due to reservoir depletion 
are neglected; 

v. internal turbine efficiency is interpolated from 
empirical data for reference Francis turbine. 

A detailed description of the PHS model is beyond the 
scope of this paper; however, its key characteristics are 
summarized as follows: 

− the model incorporates a finite storage capacity 
that is charged and discharged during PHS 
operation; 

− pumping efficiency is assumed constant, while 
turbine mode accounts for efficiency variations 
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fired thermal power plants, which adjust generation 
according to demand and economic constraints. 
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plants: 
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Δ𝐸̇𝐸sys,2 + 𝑃𝑃HPP, pot; if demand exceeds potential
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assumed for both scenarios as foreseen in [1]. 

Two PHS units were modeled within the system, aligning 
with projections in [1].  

The energy potential of wind and solar power was modeled 
using meteorological data, with a single reference location 
selected for each. This simplification deviates from reality, 
as large-scale deployment at a single site is impossible, due 
to low energy density. Furthermore, conditions 
significantly vary by location. However, the reference sites 
were chosen for optimal wind and solar potential in 
Slovenia, inherently favoring renewable energy sources. 

Wind speed data were obtained from the ARSO automatic 
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and adjusted to turbine rotor height with exponential wind 
profile model. The reference wind turbine, Enercon 
66/18.70 [12], was used with its technical characteristics to 
calculate the actual wind energy potential 𝑃𝑃w, pot. The 
model assumes 81 wind turbines (installed power 146 
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Similarly, solar power potential 𝑃𝑃PV,pot was calculated 
using 2020 surface solarization data for Koper [13]. The 
model assumes 3.6 million panels (1,602 MWe) in the NS 
scenario, reflecting current installed capacity in Slovenia, 
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IV. RESULTS 

A full discussion of simulation results is beyond this 
paper’s scope; however, key results are outlined in Table 1. 

Table 1. Results of the simulation for NS and RS 

 NS RS 
share of RES in mix [%] 14 59 
imported energy (neg. sign) [TWh] -0.11 -1.91 
exported energy [TWh] 3.19 6.94 
net balance [TWh] 3.08 5.03 
standard deviation of Δ𝐸̇𝐸bor(𝑡𝑡) [kW] 420 1580 
carbon intensity of energy mix [kgCO₂eq/MWh] 113 148 

Across both scenarios, NPPs provided stable baseload 
generation, minimizing surplus energy while covering 
most demand. In contrast, wind and solar introduced large 
surpluses exceeding several GWe (Fig. 2), requiring 
storage or substantial exports for system balance. TPPs 
operated at three discrete power levels (~0%, 40%, 100%), 
contributing to stability but responding slowly to demand 
changes due to thermal inertia, leading to minor but 
predictable surpluses. 

 
Figure 2. Basic operation of the modeled system 

HPPs improved grid flexibility but lacked sufficient 
storage capacity to mitigate long-term variability. PHS 
helped stabilize high-power fluctuations but faced charging 
constraints, limiting its ability to absorb large renewable 
surpluses (>1 GWe). Even additional PHS capacity did not 
significantly improve storage due to the same limitations. 
Table 1 quantifies fluctuation size through the standard 
deviation of the final energy balance Δ𝐸̇𝐸bor(𝑡𝑡). The carbon 
intensity of energy mixes was calculated using data from 
Life Cycle Assessment studies summarized in  [14]. 
Imported energy flows were assigned a footprint of 522 
kgCO₂eq/MWh, based on gas turbine emissions [14]. This 
assumption is justified, as gas turbines are the most likely 
source of backup generation in interconnected energy 
markets even outside Slovenia borders [1]. To further 
assess NPPs' role in decarbonization, an NS variant 
excluding solar was simulated. In this case, annual imports 
increased to 0.30 TWh, while exports fell to 1.34 TWh (net 
balance 1.03 TWh), and carbon intensity increased slightly 
to 125.6 kgCO₂eq/MWh, demonstrating that a single 
conventional NPP can replace 8 GWe of solar capacity, 
ensuring grid stability with minimal fluctuations while 
reducing reliance on backup plants, storage, and grid 
reinforcements, ultimately lowering energy costs while 
maintaining low emissions. 

The environmental impact difference between scenarios is 
particularly evident in land use requirements: NS requires 
2.4 km²/TWh, while RS requires 9.1 km²/TWh. The area 

was calculated based on [15]. This raises concerns about 
encroachment on protected areas (e.g., Natura 2000) [1], 
[15], with potential threats to biodiversity and ecosystem 
functions, including natural carbon capture capacity. 
 

V. CONCLUSIONS 

The analysis demonstrated that nuclear power ensures 
stable baseload generation, minimizing grid fluctuations 
and reducing reliance on extensive storage or exports. In 
contrast, high variable renewables introduced large surplus 
fluctuations (>1 GWe), requiring costly balancing 
measures. Despite similar net energy balances, the nuclear 
scenario exhibited lower carbon intensity (113 vs. 148 
kgCO₂eq/MWh) and almost 4-time lower land use, 
reducing pressure on ecosystems and biodiversity. A 
nuclear-only scenario, without solar, achieved carbon 
intensity of 125.6 kgCO₂eq/MWh, while maintaining a 
comparable import dependency to that of the NS, high-
lighting nuclear's undisputable role in decarbonizing 
energy supply and raising concerns about the feasibility 
and justification of renewable-only energy policies. 
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IV. RESULTS 

A full discussion of simulation results is beyond this 
paper’s scope; however, key results are outlined in Table 1. 
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Across both scenarios, NPPs provided stable baseload 
generation, minimizing surplus energy while covering 
most demand. In contrast, wind and solar introduced large 
surpluses exceeding several GWe (Fig. 2), requiring 
storage or substantial exports for system balance. TPPs 
operated at three discrete power levels (~0%, 40%, 100%), 
contributing to stability but responding slowly to demand 
changes due to thermal inertia, leading to minor but 
predictable surpluses. 
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