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EDITORIAL
The first paper is entitled “Alignment of aFRR and mFRR prequalification 
process in Croatia with the target market design”. The paper gives an 
overview of the current prequalification practices of HOPS, examines 
the PICASSO and MARI standards and evaluates the prequalification 
processes in Slovenian and German transmission system operators. 
The prequalification process, as defined in Commission Regulation (EU) 
2017/1485, ensures that entities or groups providing reserves meet the 
requirements of transmission system operators. HOPS, the Croatian 
Transmission System Operator, carries out this process for potential 
providers of ancillary services, a prerequisite for offering ancillary ser-
vices. This paper examines the differences between the existing prequ-
alification rules and the technical requirements in PICASSO and MARI, 
analyzes the practices in Slovenia and Germany and proposes adjus-
tments for the Croatian aFRR and mFRR prequalification procedures. 
FCR and RR are excluded. The focus is on aFRR and mFRR as balan-
cing services in Croatia. The conclusion emphasizes the need to adopt 
the mFRR operational test.

The second paper is “Optimizing Remaining Useful Life Estimation of Lit-
hium-Ion Batteries: A Particle Swarm Optimization-Based Grey Predicti-
on Mode”. This study presents an innovative grey modelling method for 
predicting the Remaining Useful Life (RUL) of lithium-ion batteries (LIBs). 
Using the NASA dataset for charge and discharge cycles, the proposed 
model significantly improves energy storage system dependability and 
security. By integrating grey system theory and optimization techniques, 
the approach outperforms existing Grey modelling methods in terms 
of accuracy and computational efficiency. The study also suggests the 
inclusion of factors such as current, voltage and temperature to further 
improve the accuracy of RUL prediction. The research emphasizes the 
crucial need for accurate estimation of the age and condition of LIBs, 
taking into account environmental and usage factors. The study helps 
to ensure the reliability and safety of LIBs and represents a significant 
advance in RUL prediction for practical applications.

The third paper is entitled “Development of transformers with natural 
ester and cellulose or aramid insulation”. This study deals with research 
work aimed at establishing design guidelines for power transformers uti-
lizing natural esters. The presented simulation results confirm the appro-
priateness of the design rules and allow the necessary adjustments for 
the implementation of the new insulation system compared to the tra-
ditional mineral oil and cellulose based solid insulation. The results also 
serve as a basis for the subsequent design of transformers that combi-
ne natural esters with aramid insulation. The development of advanced 
transformers with alternative insulation systems required a comprehensi-
ve analysis of material integration into the design. The research is a deci-
sive step towards advancing transformer design for improved efficiency 
and sustainability.

The fourth article is “Development of Fiber Reinforced Compound Bipo-
lar Foils for Fuel Cells”. The research project »InduRex« focused on the 
production of graphite polymer bipolar plates with minimal thickness, 
aligning with the » Department of Energy« standards. The project succe-
ssfully translated a metallic bipolar plate design to a compound foil, but 
concerns about reduced mechanical stability with larger foils prompted 
the introduction of carbon fibers in the »Faserverstaerkte Folien« rese-
arch project. Continuous production of highly filled foils was achieved, 
which were successfully structured as bipolar foils for fuel cell operati-
on. Initial cell tests showed good efficiency at different current densities, 
motivating the ongoing pursuit of creating bipolar plates from compound 
foils. The current challenge is to produce larger active area bipolar films 
with increased mechanical stability for constructing multicell stacks. The 
studies carried out show that the area-specific forward resistances of 
the most electrically conductive bipolar foils are below 20 mΩ in the un-
structured state.

The last paper is “Simulated Thermal Fault: Assessing Dissolved Gas 
Analysis through Tube Heating Method on Mineral Oils and Natural 
Ester”. This study presents a test system developed for the investigation 
of thermal faults using the tube heating method, an essential technique 
for early fault detection and transformer condition monitoring. In the 
study, the Tube Heating Technique is used to simulate thermal faults 
at temperatures up to 800 °C and to investigate the variations of dis-
solved gases depending on the fault severity and the type of insulating 
liquid. DGA data from commercially available insulating fluids, including 
inhibited and uninhibited mineral oils and a natural ester, demonstrate 
differences in gas formation. Examination of an inhibited mineral oil, an 
uninhibited mineral oil and a natural ester using the tube heating method 
at temperatures up to 800 °C showed similar gas levels for mineral oils, 
but significantly higher carbon monoxide and carbon dioxide levels for 
the natural ester.
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Alignment of aFRR and mFRR prequalification process 
in Croatia with the target market design 

Petra Sagrestano Štambuk, Dajana Vrbičić Tenđera, Nikolina Zovko, Tomislav Tenđera and Marin Uzelac

Summary — Commission Regulation (EU) 2017/1485 of 2 August 
2017 establishing a guideline on electricity transmission system opera-
tion defines a prequalification process as a process to verify the com-
pliance of a reserve providing unit or a reserve providing group with 
the requirements set by the transmission system operator. Croatian 
Transmission System Operator Plc. (HOPS) carries out a prequali-
fication process in order for (potential) ancillary service providers to 
prove their capability of providing ancillary services, which means 
that the prequalification process is a prerequisite for the provision of 
ancillary services. As part of the European Network of Transmission 
System Operators for Electricity, HOPS participates in the European 
implementation projects PICASSO and MARI, which aim is to esta-
blish a single European platform for aFRR and mFRR balancing ser-
vices. Within the PICASSO and MARI projects, the technical charac-
teristics of the products traded on unique European platforms were 
defined. This paper analyzes the difference between the requirements 
from the existing prequalification process rules and the technical 
requirements for products within the PICASSO and MARI projects, 
explores practice in Slovenia and Germany and suggests the required 
adoptions of aFRR and mFRR prequalification process in Croatia.

Keywords — aFRR, MARI, mFRR, PICASSO, prequalification 
process 

I. Introduction

ANCILLARY services refer to a range of functions which 
transmission system operators (TSOs) contract so that they 
can guarantee system security. [1] 

Croatian Transmission System Operator Plc. (HOPS) is the in-
dependent TSO in Croatia. HOPS determines the types, scope of 
supply, providers and period of supply of ancillary services. The 
Electricity Market Act (Official Gazette 111/2021) divides ancillary 
services into balancing services and non-frequency ancillary servi-
ces. In European practice, balancing services are also called frequ-
ency ancillary services. 

Frequency ancillary services in Europe are divided into four 
main reserve categories: Frequency Containment (FCR), automa-
tic (aFRR) and manual (mFRR) Frequency Restoration, and Re-
placement Reserve (RR). The FCR and aFRR are automatically 
activated reserves (activated upon a frequency deviation) with fast 
response and short but more frequent activation events. The mFRR 

and RR are manually activated reserves with slower response, lon-
ger and less frequent activation events. FCR is used to intervene 
automatically within seconds in the entire synchronous area to re-
store the balance between the supply and the demand. A provider 
must be able to ramp up/down its generation/consumption to the 
full power within 30 seconds after a disturbance. After successful 
FCR activation, the frequency is at a stable value below or above 
the nominal value. The task of restoring the frequency to its nomi-
nal value is performed by aFRR and, if necessary, additionally by 
mFRR. The aFRR acts on a Load Frequency Control (LFC) area 
level where it replaces local FCR activations and mitigates power 
flow imbalances on the LFC interconnection lines. The activation 
time for aFRR provision is 30 seconds to 7.5 minutes in Europe (5 
minutes after 2024). The mFRR is manually activated to release 
the activated aFRR capacity or to provide additional frequency re-
storation power [2]. At the time of writing the paper, full activation 
time of mFRR in HOPS control area is 15 minutes while in most 
European countries is 12.5 minutes. As the mFRR provision is gra-
dually increasing, the aFRR is released and can be used for new 
imbalances. Additionally, a TSO can use RR, but is not obligatory. 
Full activation time of RR is 30 minutes. 

In Table I the comparison between frequency ancillary services 
is shown. It should be noted that full activation time for aFRR and 
mFRR may vary within European countries. Harmonization of full 
activation times at the European level is expected in the framework 
of common implementation projects. 

table I

Comparison Between Frequency Ancillary Services 

Full activation time Activation Purpose

FCR 30 seconds Automatically 
activated

Frequency 
containment

aFRR 5 minutes* Automatically 
activated

Frequency 
restoration

mFRR 12,5 minutes* Manually activated Frequency 
restoration

RR 30 minutes Manually activated Frequency 
restoration

*may vary within European countries

FCR and RR are out of the scope of this paper. In Croatia, at the 
time of writing this paper, aFRR and mFRR are considered as ba-
lancing services. All individual network users and aggregators who 
have signed Balancing Service Agreement with HOPS can provide 
balancing services. A prerequisite for signing Balancing Service 
Agreement is successfully completion the prequalification process 
and proof of technical ability to provide balancing services.

(Corresponding author: Petra Sagrestano Štambuk)
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II. Prequalification Process Rules
In accordance with Commission Regulation (EU) 2017/1485 of 

2 August 2017 establishing a guideline on electricity transmission 
system operation, HOPS has developed document Rules for con-
ducting prequalification process (Verification process for provisi-
on of aFRR and mFRR balancing services) that was valid at the 
time of writing this paper. The document defines the procedure for 
performing aFRR and mFRR prequalification process, the steps of 
which are listed below. The first step in prequalification process is 
the application process. When applying for the prequalification pro-
cess, the candidate submits a completed Application form for aFRR 
or mFRR balancing service. HOPS checks submitted forms and if 
the criteria are met, informs the candidate about the possibility of 
continuing the prequalification process. The second step is testing 
the communication systems, which needs to be completed before 
proceeding to the final step, which is testing the technical capability 
to provide aFRR or mFRR balancing services. The requirements 
that are tested in the last step are listed in the documents Test profi-
les for aFRR service and Test profiles for mFRR service which are 
available on HOPS’ website. After the completion of the last step, 
HOPS evaluates the results of the prequalification process [4]. 

A. aFRR operating test
Operating test for aFRR balancing service includes the 

following steps:

1)  upper and lower limits of control range check,

2) verifying declared gradient (ramping) for positive and  
 negative direction,

3) dead band between two opposite requests check and

4) checking operation in the middle of the control range and 
response to small changes check.

In coordination with a candidate, HOPS creates a detailed test 
program for each test. Requirements regarding a candidate’s res-
ponse are shown in Figure 1. Reaction time needs to be less or 
equal to 30 seconds and full activation time up to 5 minutes [5]. 

±10
+5%

-5%

-5%
t+5 t+15 t+20

+5%

30sec

Prequest (MW)

Time (min)

Ideal requested realization
Tolerable range limits

Fig. 1. aFRR operating test [5]

B. mFRR operating test
When testing the technical ability to provide the mFRR ba-

lancing service, the candidate proves his ability by responding to 
two activation requests. Activation requests and allowable respon-
se limits are shown in Figure 2. The first activation request lasts 
30 minutes, while the second activation request lasts 75 minutes. 
The interval between activation requests is arbitrarily determined 
by HOPS during testing, respecting the minimum period between 
activation requests of 15 minutes and taking into account the de-
activation time of the previous activation request. The maximum 
time between activation requests is 300 minutes.

Requirements regarding response are shown in Figure 2. [6]

15 min 15 min 15 min 15 min

1st activation 2nd activationperiod between two 
activations ≥15 min

request
realization

P (MW)

t (min)

Fig. 2. mFRR operating test [6]

As it is shown in Figure 2, the criteria for full activation time 
is 15 minutes.

III. European Implementation Projects MARI and 
PICASSO

The Platform for the International Coordination of Automated 
Frequency Restoration and Stable System Operation (PICASSO) 
and Manually Activated Reserves Initiative (MARI) are implemen-
tation projects of European transmission system operators whose 
goal is the establishment of European aFRR and mFRR platforms, 
two key objectives of Commission Regulation (EU) 2017/2195 of 
November 23, 2017 on the establishment of guidelines for balan-
cing electricity. The purpose of the joint platforms is to improve 
the efficiency of the balancing process at the European level and 
integrate the balancing energy market, promote the possibility of 
exchanging aFRR and mFRR balancing energy while contributing 
to maintaining operational security. According to the projects’ ti-
melines, the connection of HOPS’ internal balancing platform with 
the European aFRR and mFRR platforms is planned for July 2024.

In the context of alignment of the prequalification process with 
the requirements of European platforms, it is necessary to analyze 
the products offered on the platforms.

A. aFRR product within PICASSO project
 PICASSO project was designed with the aim of connecting 

the AGC systems of individual TSOs and achieving maximum so-
cial benefit at the European level, taking into account the network 
topology and the balance of bids of aFRR balancing service pro-
viders. The AGC system, i.e. the system for automatic regulation 
of production, is the basic system for carrying out the frequency 
restoration process using the aFRR balancing service. The network 
topology is modeled with constraints for each boundary of load-
frequency control area. These limits are called Available Transmi-
ssion Capacities and they are determined by predefined processes. 
The AGC system of each individual OPS within the PICASSO 
project should always be connected to the central optimizer (Ac-
tivation Optimization Function) of the aFRR platform, i.e. with a 
common priority list. The activation itself takes place in cycles that 
are activated at intervals of every 4 seconds. Each cycle consists of 
three steps. The first step is the calculation of the value for the unsa-
tisfied demand (surplus or shortage of energy) of an individual TSO 
according to the common priority list, the second step is the netting 
TSO’s deviation, and the third step is the recalculation of the value 
for the unsatisfied demand according to the common priority list. 
After these three steps, the total prices are calculated depending on 
the prices of the offers and the limitations of transmission capaciti-
es. Activation according to the aFRR platform takes place after each 
cycle, while the TSO – balancing service provider (BSP) delivery 
shape is subject to definition at the national level. [7]
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Standard aFRR product has the following characteristics:

1) by December 2024, the full activation time is  
 harmonized  to 5 minutes,

2) minimum bid size and the bid granularity are  
 harmonized to 1 MW,

3) the validity period for aFRR bids is harmonized to 15  
 minutes,

4) all bids are divisible,

5) complex bids/linked bids are not supported by the aFRR  
 platform.

B. mFRR product  within  MARI project
Optimization algorithm developed within MARI is formula-

ted as Mixed Integer Linear Programming Problem. The primary 
objective of the Activation Optimization Function is to maximi-
ze social welfare and the secondary objective is the minimization 
of cross-border exchanges. On the mFRR platform, the standard 
mFRR product can be ordered either through scheduled activation 
or direct activation with a minimum quantity of 1 MW. Direct and 
scheduled activations use the same Activation Optimization Func-
tion with different input data. Balancing service providers may 
choose if their bids are available for direct activations. The exchan-
ge shape for scheduled and direct activation between two TSOs is 
shown in Figure 3.  TSO – BSP delivery is defined in the national 
terms and conditions. Optimization for scheduled activation runs 
every 15 minutes, once for each 15-minute interval, with delivery 
for the next 15-minute interval [8]. 

The full activation time is the same for both scheduled and di-
rect activations and is 12.5 minutes, while 2.5 minutes is the time 
required for communication between the central and national 
platforms. The key data for the prequalification process is the full 
activa

tion time.

Fig. 3. Scheduled and direct activation within MARI [8]

IV. Examples of Prequalification Processes of 
Some European TSOs

In order to gain a broader overview of the prequalification 
processes in Europe, two examples of prequalification processes 
are presented in this chapter: Slovenian TSO’s (ELES) and Ger-
man TSOs’ (Amprion GmbH, TransnetBW GmbH, TenneT TSO 
GmbH and 50Hertz Transmission GmbH) process.

A. ELES - Slovenia
In the document Terms and conditions for balancing service 

providers on the ELES balancing market aFRR and mFRR, availa-

ble in English, prequalification processes are defined. The steps of 
ELES’ prequalification process are shown in Figure 4 [9]. 

Technical qualification 
verification

Verification

Application for the 
recognition of the 

technical qualification

Failed

Passed

Issue of the certificate of 
technical qualification

Initiation of the 
procedure for the BSP

Procedure 
completed

Fig. 4. The steps of ELES’ prequalification process [9]

1) Test activation for aFRR
The prerequisite for conducting the qualification test is a succe-

ssful application by sending the “Application for technical qualifi-
cation of the balance service provider” form and successful testing 
of communication and information system. In the Article 49 of 
Terms and conditions for balancing service providers on the ELES 
balancing market technical requirements for providing aFRR ser-
vice are stated:

1. The BSP shall be capable of activating or deactivating the to-
tal volume of the aFRR balancing energy bid, i.e. they shall be 
capable of implementing the change of active power from the 
value of the operating point up to the limit of the offered aFRR 
volume in no more than five minutes;

2. After a certain time delay (a reaction time of 30 seconds), the 
activated value shall start following set point, and in no more 
than five minutes, shall achieve the requested value with an 
imbalance of 5% of the sum of all aFRR balancing bids sub-
mitted by individual BSP being allowed. For a short period 
of time a single overshoot is allowed in the direction of the 
activation, namely up to 10 % of the value of the activated 
balancing capacity with the maximum allowed value of the 
overshoot being limited to 10 MW.

The range of the response adequacy in the event of a step chan-
ge of activation set point is illustrated in Figure 5. A detailed test 
program is agreed seven days before the day of performing the 
qualification test. [9]

Fig. 5. The range of the response adequacy in the event of a step change 
of the required balancing capacity [9]
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2) Test activation for mFRR
Just like for the aFRR balancing service, the prerequisite for 

the performing qualification test for mFRR is a successful applica-
tion by sending the “Application for technical qualification of the 
balance service provider” form and successful testing of communi-
cation and information system. In article 97. of Terms and conditi-
ons for balancing service providers on the ELES balancing market 
technical requirements for providing aFRR service are stated. The 
BSP shall be capable of activating the control group or the portfolio 
which they use to provide the mFRR service, i.e. they shall be ca-
pable of changing the active power in accordance with the TSO’s 
requirement, so that they:

1) reach the required value of the capacity within 12,5 minu-
tes of the request being submitted by the TSO and

2) implement the change of the required capacity or end the 
activation within 12.5 minutes of the request being submitted by the 
TSO.

As with the aFRR service, two activation tests are performed 
when testing the mFRR balancing service. Activation test example 
is in the Figure 6 [9].

hown in the Figure 6. [9] 

Fig. 6. An example of test activation for mFRR in the framework of the 
qualification procedure [9]

B. German TSOs
Four TSOs operate in the German control area: Amprion 

GmbH, TransnetBW GmbH, TenneT TSO GmbH and 50Hertz 
Transmission GmbH. The document Prequalification Process for 
Balancing Service Providers (FCR, aFRR, mFRR) in Germany 
(“PQ conditions”), available in English, defines the requirements 
that must be fulfilled within the prequalification process, which 
apply to all four German TSOs.

In the document is stated that prequalification process and 
prequalification application are carried out via PQ portal. As a part 
of the application documents, the candidate needs to deliver the 
required data and results of the carried operating test. The required 
information technology configuration is described in the separate 
document that can be found on the official  website. The operating 
test is normally carried out independently by the BSP. Coordinati-
on with the reserve connecting TSO is however requested in cases 
in which a BSP intends to prequalify 150 MW of power or more. 
However, in the case of prequalification of a power reserve of more 
than 150 MW, coordination with the competent TSO is required. 

The prequalifiable power (actual balancing reserve value of the 
stationary period) is determined by evaluating the results of the 
performed operating test according to defined formulas. In addi-
tion to the operating test, a control system test is carried out. In 
contrast to the operating test, which the BSP carries out without 
the participation of the reserve connecting TSO, the control system 
test is carried out in close coordination with the TSO. The control 
system test has two primary elements: The BSP must show that its 

pool is connected correctly to the control system of the TSO and 
the BSP must verify the robustness of the providing by the pool 
[10]. 

 Within the document, all steps within the prequalification pro-
cess are comprehensively defined, as well as certain specifics that 
are not included in this paper. 

1) aFRR operating test
Within aFRR operating test, the response time up to 30 secon-

ds, the power change period of 5 minutes and a deactivation time 
of 5 minutes are defined. A stationary period, which starts 5 minu-
tes after the set point change and lasts at least 10 minutes is also 
defined. Typically, three reservation and two activation phases are 
carried out during an operating test. Figure 7 shows the permissible 
and acceptable fluctuations as part of the aFRR operating test [10].

Fig. 7. Schematic representation of the “allowed” and “acceptable” 
intervals (aFRR) [10]

2) mFRR operating test
In the case of mFRR, the power change period starts with the 

set point change and ends 12.5 minutes after the set point change. 
The stationary period starts 12.5 minutes after the set point chan-
ge. It lasts at least 10 minutes Typically, three reservation and two 
activation phases are carried out during an operating test. Figure 
8 shows the permissible and acceptable fluctuations as part of the 
aFRR operating test. [9]

Fig. 8. Schematic representation of the “allowed” and “acceptable” 
intervals (mFRR) [10]

Petra Sagrestano Štambuk, Dajana Vrbičić Tenđera, Nikolina Zovko, Tomislav Tenđera and Marin Uzelac, Alignment of aFRR and mFRR prequalification process in 
Croatia with the target market design, Journal of Energy, vol. 72 Number 3 (2023), 3–7 
https://doi.org/10.37798/2023723472    
© 2021 Copyright for this paper by authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

5 
 

requirements that must be fulfilled within the prequalification 
process, which apply to all four German TSOs. 
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TSO. The control system test has two primary elements: The 
BSP must show that its pool is connected correctly to the 
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MARI projects with the prequalification processes of ELES and 
German TSOs, it can be concluded that the prequalification 
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This is supported by the fact that German TSOs are already 
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IN CROATIA 

HOPS is currently adopting the aFRR and mFRR 
prequalification process. The planned completion and 
publication of the document is at the beginning of 2024. Unlike 
the existing version, the new version of the document will be 
improved in the form of terminology standardization and a 
clearer structure, in addition, it will be adapted to the 
requirements of target market design (PICASSO and MARI). 
During the creation of the new document, the requirements of 
European implementation projects as well as the existing 
European practice were analyzed. It was found that mFRR 
operating test needs to be adjusted. With regard to the 
performed analyses, it was concluded that the full activation 
time (time to reach full declared reserved power) must be 
changed from 15 minutes to 12.5 minutes.  
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C. Compliance of ELES and German TSOs’ 
prequalification process with PICASSO and MARI

When comparing the requirements of the PICASSO and MARI 
projects with the prequalification processes of ELES and German 
TSOs, it can be concluded that the prequalification processes are 
adapted to European implementation projects. This is supported 
by the fact that German TSOs are already connected to European 
aFRR and mFRR platforms.

V. Adopting aFRR and mFRR Prequalification 
Process in Croatia

HOPS is currently adopting the aFRR and mFRR prequali-
fication process. The planned completion and publication of the 
document is at the beginning of 2024. Unlike the existing version, 
the new version of the document will be improved in the form of 
terminology standardization and a clearer structure, in addition, it 
will be adapted to the requirements of target market design (PICA-
SSO and MARI). During the creation of the new document, the 
requirements of European implementation projects as well as the 
existing European practice were analyzed. It was found that mFRR 
operating test needs to be adjusted. With regard to the performed 
analyses, it was concluded that the full activation time (time to re-
ach full declared reserved power) must be changed from 15 minu-
tes to 12.5 minutes. 

Table II

Comparison Between Full Activation Time in Existing and 
New aFRR and mFRR Prequalification Process

Full activation time
Existing prequalification process New prequalification process

aFRR 5 minutes 5 minutes

mFRR 15 minutes 12,5 minutes

Additionally, HOPS considers shortening the duration of the 
activation, defining the amount of the tolerance threshold and 
validating the deactivation time. Additionally, given the different 
requirements compared to current practice, it is necessary to deci-
de which providers must repeat the prequalification process. The 
considered example of mFRR operating test profile is shown in 
Figure 9.

The requirements of the aFRR operating test do not need to be 
changed.

 
Fig. 9. Potential profile of mFRR operating test

V. Conclusion
PICASSO and MARI projects represent the target market de-

sign for aFRR and mFRR balancing services.  In order to be able 
to participate in PICASSO and MARI, some TSOs need to adjust 
local processes. One of the processes that potentially need to be 
adopted is the prequalification process for providing aFRR and 
mFRR balancing services. The paper provides an overview of the 
existing HOPS’ practice of performing aFRR and mFRR prequali-
fication process and in order to determine the necessary changes, it 
analyses PICASSO and MARI standard products and prequalifica-
tion processes of Slovenian TSO and German TSOs. To conclude, 
the mFRR operating test needs to be adopted. 

The identified changes, together with other improvements, will 
be included in a new document which is expected to be finalized 
and published in early 2024.   
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Optimizing Remaining Useful Life Estimation of 
Lithium-Ion Batteries: A Particle Swarm Optimization-

Based Grey Prediction Model
Ali M Abdulshahed, Ibrahim Badi

Summary — Accurately estimating of the age and condition of lit-
hium-ion batteries (LIBs) is paramount for their safe and economi-
cally viable utilization. However, assessing the degradation of these 
power units proves to be challenging due to their dependence on va-
rious environmental and usage factors. In this study, we propose an 
efficient Particle Swarm Optimization (PSO)-based Grey Theory pre-
diction model to determine the Remaining Useful Life (RUL) of lit-
hium-ion batteries. The proposed model utilizes PSO to optimize the 
coefficients of a grey prediction model, enabling accurate forecasting 
of the remaining useful life of LIBs. Our results demonstrate that the 
presented model outperforms conventional grey prediction models 
in terms of both accuracy and stability. Furthermore, the proposed 
model offers simpler predictions compared to existing models in the 
literature. By introducing this promising technique, our study con-
tributes to the precise forecasting of the RUL of lithium-ion batteries 
and holds potential for applications in similar domains. This research 
serves as a significant step towards ensuring effective management 
and utilization of LIBs, promoting their reliability and safety.

Keywords — Particle Swarm Optimization, Lithium-ion batteries, 
grey model

1 Introduction 

The scarcity of fossil-fuel reserves, combined with the challen-
ges of climate change, provides a significant motivation for 
the development of environmentally friendly transportation 

systems, sustainable energy sources, and intelligent grid networks. 
Successful implementation of these sectors necessitates the use of 
energy storage systems, which has garnered notable attention from 
researchers in recent times. In those fields, lithium-ion batteries are 
widely used. They play a significant role as one of the most important 
components and should be closely observed and managed. To ensu-
re the economic feasibility of electric vehicles and the infrastructure 
of renewable energy systems and intelligent grids, it is imperative to 
have extended battery lifetimes. One of the most pressing and diffi-
cult issues is battery degradation during operation, which has become 
a limiting factor in a battery’s lifetime. Lithium-ion batteries have be-

come a extensively used technology due to their efficiency in storing 
and providing energy [4] LIBs are a class of rechargeable battery that 
has become well-known in recent years, because of their extended 
lifespan, impressive energy density and minimal self-discharge rate. 
Lithium-ion batteries find widespread use across various applicati-
ons, including electric vehicles, consumer electronics, and stationary 
storage systems [2]. The high-energy density of lithium-ion batteries 
(LIBs) is a key advantage, as it allows for the storage of a larger qu-
antity of energy inside a small form factor, compared to alternative 
rechargeable battery technologies. This attribute renders LIBs highly 
suitable for applications with limited space, such as mobile phones 
and laptop computers. In addition, lithium-ion batteries demonstrate 
a prolonged cycle life, indicating their ability to withstand numerous 
charge and discharge cycles without substantial capacity deteriorati-
on. This characteristic guarantees the ability of LIBs to undergoing 
repeated charging and discharging cycles, thus offering extended ope-
rational capabilities and durability. [20]. RUL is a substantial concept 
in the realm of lithium-ion battery technology. The term “ RUL “ co-
uld also be defined as the amount of time a battery can be used before 
it needs to be replaced [20].

Model-based methods involve the utilization of mathematical 
models, a collection of algebraic and empirical equations, and re-
lated parameters, which require experimentation and the analysis 
of large datasets [1]. Model-based approaches can construct the de-
gradation behaviour of a battery, with either physics or regression 
models being employed. This extrapolation can predict battery per-
formance. Recent research has demonstrated that physics models 
are more accurate for long-term predictions compared to empirical 
models, which often result in high errors [22]. 

The physics-based model for Remaining Useful Performance 
(RUP) [15], and RUL is predicted by integrating theories concer-
ning reaction kinetics and electrode porosity. These theories are 
grounded in the physical and electrochemical processes occurring 
within the battery [1]. This type of model, also known as a whi-
te-box model, is a mathematical modelling technique that utilizes 
differential equations to mimic the behaviour of the system under 
consideration. These models are often able to be interpretable ma-
king them a popular choice for academic research. However, the 
physics-based model for RUL prediction has several drawbacks, 
including the need for specialized knowledge, difficulty in deter-
mining or recognizing model parameters, and high computatio-
nal costs. [9]. Furthermore, measuring internal impedance at low 
frequencies is time-consuming and difficult. Another significant 
issue is that noises produced by other combined components of an 
online system affect the accuracy of electrochemical impedance 
spectroscopy (EIS) measurements as a result of the low-amplitu-
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de signal required for EIS measurements. To address these issues, 
many researches advocate prediction based on empirical regressi-
on models [8], [14]. 

Data-driven models are a type of behavioural model that uses 
historical information to estimate the future behaviour within a 
system, specifically used here the Remaining Useful Life (RUL) of 
a battery. [1]. These models are based on the premise that past per-
formance is indicative of future performance. In opposition to mo-
dels based on physical equations, empirical models are founded on 
experimental data that can demonstrate the connections between in-
puts and outputs. Empirical-driven RUL prediction techniques can 
be classified under two groups: statistical modelling methods, such 
as regression paradigm, linear polynomial paradigm, and other pa-
rametric paradigms; non-parametric techniques, such as fuzzy logic 
systems (FLS), machine learning (ML), etc. [13]. Figure 1 Illustrates 
the key RUL forecasting methods for lithium-ion batteries [21].

Fig. 1. Major RUL projection approaches [21].

Recently, the Deep Neural Network (DNN) has become a fa-
vourable technology for modelling a large volume of data [1]. This 
is due to its multilayer network structure, which allows for multiple 
activation or convolution operations within a single neuron, unlike 
the single activation function used in traditional Artificial Neural 
Networks (ANNs). This feature enables DNNs to be fed with data 
and extracts complex features and relationships from the data.

In [10] are introduced a deep neural network model combined 
with an exclusion layer to avoid data over-fitting, 11,345 data po-
ints were drawn from a single battery dataset for building a model. 
Nevertheless, the effectiveness metric the Root Mean Square Error 
(RMSE) was higher than expected at 3.427 due to limitations in 
hyperparameter tuning and insufficiently informative data for pre-
dictions. Despite these limitations, the underlying approach holds 
potential. Its ability to integrate an exclusion layer for preventing 
overfitting is a valuable innovation and could be further explored 
with a more comprehensive hyperparameter search and potentially 
richer or augmented datasets. Future research could investigate the 
impact of different network architectures or feature engineering 
techniques on model performance.

In a separate study [11] are introduced an enhanced Long Short-

Term Memory (LSTM) method that was calibrated using Dataset 
collected from 28 batteries (NASA, Batteries No 5–7, Battery No 
18, Batteries No 45–48, Batteries No 53–56, Batteries No 29–34, 
Battery No 36, Batteries No 38–44, Battery No 49, Battery No 51). 
The efficacy of the neural network was assessed with different 
battery discharge variables, and they found that RMSE decreases 
when the neural network is trained with more histories data. Altho-
ugh the proposed neural network was complex in nature, it could 
be reduced using more efficient optimization method and model 
selection. However, it may not be feasible to use these methods for 
forecasting Remaining Useful Life (RUL) in on-site engineering 
applications. In this context, while the enhanced LSTM method 
shows promise for battery RUL prediction, its complexity might 
make it less suitable for direct implementation in on-site enginee-
ring applications. Simpler models or cloud-based solutions might 
be more practical alternatives in such settings.

The work in [24] provides an in-depth look at the conducting 
of the optimized Grey model GM(1, 1) for estimating the RUL of 
lithium-ion batteries. The authors provide a comprehensive over-
view of the model and its implementation to battery life prognosis. 
They also discuss how the model can be used to optimize battery 
function and extend its life. The authors provide detailed analysis 
of their results, which demonstrate that the model is effective in 
predicting remaining useful life. Overall, this article provides a va-
luable resource for researchers interested in using this model for 
battery life prediction. To recap, the article’s pros lie in its in-depth 
exploration of the GM(1,1) model, its practical implementation gu-
idance, and its focus on optimizing battery life. This combination 
makes it a valuable resource for researchers and practitioners alike, 
contributing to the advancement of lithium-ion battery technology.

A solution is needed for situations where there is a limited amo-
unt of memory and computing power, which can use raw sensor 
data to calculate the state of health without requiring extensive pre-
processing. The Grey model GM(1, N) (Tien, 2012) can be used 
as a modeling approach for prognosticating the Remaining Useful 
Life (RUL) of a lithium-ion battery. However, due to the non-linea-
rity of the problem, traditional calibration methods such as the least 
square method may not provide an optimal solution. To address 
this issue, this work proposes a meta-heuristic method based on 
the behavior of natural swarms, namely the particle swarm optimi-
zation algorithm [7], to calibrate the GMC(1, N) coefficients [19]. 
This approach involves including a convolution integral in order to 
correct the modeling values by GMC(1, N) model. The proposed 
model is then used to prognosticate RUL of a lithium-ion battery.

In the area of battery health diagnostics, the Particle Swarm 
Optimization (PSO)-based Grey Prediction Model could presents 
a compelling alternative to data-hungry deep learning approaches. 
Its core strength lies in marrying the simplicity and interpretability 
of Grey models with the accuracy-enhancing power of PSO. This 
could lead to a model particularly well-suited for resource-constra-
ined scenarios, where limited data or computational power restricts 
the deployment of complex deep learning architectures.

II. Methodology

A. Grey modelling
The Grey System approach, first founded in [5], [6], is a met-

hod dedicated to resolving problems with small sample sizes and 
incomplete information. This method can be utilized to analyse and 
evaluate vague systems when a certain component of knowledge is 
available. It generates, excavates, and extracts beneficial informa-
tion from accessible data to accurately map out system behaviours 
as well as their implicit laws of development. The GM (1, N) model 
is one of the most extensively utilized in the recent literature in 
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order to express difficult behaviour through the use of a Black-
Grey-White approach [19]. This methodology offers a broad and 
dynamic investigation on the relationship between parameters of a 
system. The term Accumulated Generating Operation (AGO) is a 
key aspect of Grey system theory, which can increase linearity and 
reduce randomness in samples. The primary chart of grey foreca-
sting models presented in Figure 2 . In [18] and [19] are presented 
an enhanced Grey model based on the above-mentioned GM(1, 
N) model, whereby modelling values are improved by including a 
convolution integral GMC (1, N).

Fig. 2. Fundamental illustration of grey prediction frameworks [23].

The Grey theory models have conventionally been calibrated 
using the conventional least square’s approaches. However, since 
the problem is nonlinear in nature, a strictly least square’s solution 
may not suffice to adequately address this issue. To avoid the very 
long trial-and-error process, PSO can be utilized to enhance the 
Grey models’ performance. The following section will review PSO 
and then describe the GMC (1, N) learning algorithm’s main steps 
when used in conjunction with PSO. 

Training GMC (1, N) by PSO
In [7] are proposed Particle Swarm Optimization (PSO) as a 

different evolutionary technique to existing algorithms. PSO draws 
upon the behaviour of real swarms, such as fish schools and bird 
flocks, and utilizes simple structures with a clear physical meaning 
for its optimization methodology. The algorithm forms a popula-
tion of individuals-known as particles-where each behaves like an 
individual solution to the model, represented in an N-dimensional 
space. Each particle adjusts its location within this space using its 
own experience and the experience of its neighbours with regard 
to their current positions, velocities, and best previous positions. 
Unlike traditional algorithms that require the objective function 
to be differentiable, PSO is not constrained by such assumptions 
about the problem being solved. This makes it uniquely suitable for 
optimizing Grey model parameters without relying on the standard 
algorithms.

In this part, the primary steps of GMC(1, N) are depicted and its 
optimization procedure using PSO discussed. As GMC(1, N) aims 
to show the long-term behaviour of data and minimize the effect 
of random occurrences by conducting the AGO on the raw data, 
the first operation for building GMC(1, N) is to applying the initial 
Accumulated Generating Operation to the raw data. To calibrate 
the GMC(1, N) model, a suitable optimization technique such as 
PSO algorithm is employed for its potential to enhance complex 
numerical functions. Subsequently, an Inverse Accumulated Gene-
rating Operation (IAGO) is employed for the prediction of Remai-
ning Useful Life (RUL). Figure 2 displays a schematic diagram of 
PSO-based Grey model detailing its modelling process. The mo-
delling process is outlined in the following section:

Step #1: Examine the raw RUL data series as:

where j = 2,3,... N, s is the delay period of the system, the raw 
RUL data series has a length of p, while the number of values to be 
estimated is indicated by n.

Step #2: The 1st-order AGO sequences were obtained by proce-
ssing the raw data of each variable (i.e., time series) using 1-AGO 
as follows:

Ref. [19] provides an in-depth overview of GMC(1,N), howe-
ver this work will only include the core equations.

where K=1,2,…,p + n, the development coefficient is aj, (j=2, 
3,... N) , the driving coefficient is  , and  is the control parameter of 
a Grey model, respectively. Consequently, the output values can 
be given as:

 

where  

To compute the parameters ai, aj and , the PSO algorithm could 
be applied to optimize the mathematical expression in Equation 
(2). The model is then calibrated until a desirable level of perfor-
mance is achieved. The final optimal parameters are used in the 
GMC(1, 1) model in order to predict the RUL value. The following 
is a summary of the GMC(1, N) calibration process:

A particle in the PSO algorithm is parameters in the model that 
shifts its location from one iteration to the next based on velocity 
equation. Generally, if the space of search is D-dimensional, then 
the present velocity and position of the jth particle can be denoted 
by Aj=[aj1, aj2, ..., ajD ]T and Vj = [vj1, vj2,…, vjD ]^T respectively.

 where j = 1, 2, ... M and M is the particles number of the swarm. 

Particle j is able to recall the best location it has achieved so far, 
referred to as the best position locally [Pbestj = [pbest1, pbest2,..., 
pbestjD]T . Moreover, it can also move to the best position that the 
whole swarm has obtained, known as the best position globally 
[Gbestj = [gbest1, gbest2,..., gbestjD]T. To start with, particle j’s ini-
tial velocity and position are determined randomly. Subsequently, 
particle j changes its velocity for iteration k+1 based on the best 
positions (i.e. locally and globally) in addition to its velocity from 
iteration k with this Equation (3):

(3)

Where, ω is the inertia factor, which is conducted to regulate the 
effect of the previous velocities on the present velocity. The term 
c1 is the self-confidence, and the term c2 is the swarm-confidence 
factors. R is a random number that can change from 0 to 1. The 
position of particle j in iteration k+1 can be computed using the 
improved velocity as follows:

       (4)
The value of a particle is determined by an objective function that 
computes the difference between the particle and its optimum so-
lution, as follows:

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

     Step #2: The 1st-order AGO sequences were obtained by processing the raw data of each variable (i.e., 
time series) using 1-AGO as follows: 

𝑋𝑋𝑋𝑋1
(1) = �𝑥𝑥𝑥𝑥1

(1)(1 + 𝑟𝑟𝑟𝑟), 𝑥𝑥𝑥𝑥1
(1)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(1)(𝑝𝑝𝑝𝑝 + 𝑠𝑠𝑠𝑠)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(1) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(1)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(1)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�, 

where 𝑋𝑋𝑋𝑋(1) = ∑ 𝑥𝑥𝑥𝑥(0)(𝑖𝑖𝑖𝑖),𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖𝑖1   𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛.  

         Ref. [19] provides an in-depth overview of GMC(1,N), however this work will only include the core 
equations. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
(1)(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋1
(1)(𝐾𝐾𝐾𝐾 + 𝑟𝑟𝑟𝑟) = 𝑎𝑎𝑎𝑎2𝑋𝑋𝑋𝑋2

(1)(𝐾𝐾𝐾𝐾) + 𝑎𝑎𝑎𝑎3𝑋𝑋𝑋𝑋3
(1)(𝐾𝐾𝐾𝐾) + ⋯+ 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁

(1)(𝐾𝐾𝐾𝐾) + 𝑢𝑢𝑢𝑢, (1) 

where 𝐾𝐾𝐾𝐾 = 1,2, … ,𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛,  the development coefficient is  𝑎𝑎𝑎𝑎1, the driving coefficient is  𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗, (𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁), 
and 𝑢𝑢𝑢𝑢 is the control parameter of a Grey model, respectively. Consequently, the output values can be 
given as: 

𝑋𝑋𝑋𝑋�1
(1)(𝐾𝐾𝐾𝐾 + 𝑠𝑠𝑠𝑠) = 𝑥𝑥𝑥𝑥1

(0)(1 + 𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) +
1
2 × 𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−1) × 𝑓𝑓𝑓𝑓(1) + ��𝑒𝑒𝑒𝑒−𝑎𝑎𝑎𝑎1(𝐾𝐾𝐾𝐾−𝐾𝐾𝐾𝐾) × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)� +

1
2 × 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏)

𝐾𝐾𝐾𝐾−1

𝐾𝐾𝐾𝐾𝑖2

 (2) 

 where 𝑓𝑓𝑓𝑓(𝜏𝜏𝜏𝜏) = ∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖
(1)(𝜏𝜏𝜏𝜏) + 𝑢𝑢𝑢𝑢𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖𝑖2 .  

To compute the parameters 𝑎𝑎𝑎𝑎1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗 and 𝑢𝑢𝑢𝑢, the PSO algorithm could be applied to optimize the 
mathematical expression in Equation (2). The model is then calibrated until a desirable level of 
performance is achieved. The final optimal parameters are used in the GMC(1, 1) model in order to predict 
the RUL value. The following is a summary of the GMC(1, N) calibration process: 

A particle in the PSO algorithm is parameters in the model that shifts its location from one iteration to the 
next based on velocity equation. Generally, if the space of search is D-dimensional, then the present 
velocity and position of the jth particle can be denoted by 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗1,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗2, … ,𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
 and 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =

�𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗1,𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗2, … , 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

 respectively. 

 where 𝑗𝑗𝑗𝑗 = 1, 2, … ,𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 is the particles number of the swarm.  

     Particle j is able to recall the best location it has achieved so far, referred to as the best position locally  
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … ,𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�

𝑇𝑇𝑇𝑇
. Moreover, it can also move to the best position that the whole 

swarm has obtained, known as the best position globally G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗 = �g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃1, g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃2, … , g𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗�
𝑇𝑇𝑇𝑇

. To start 
with, particle j's initial velocity and position are determined randomly. Subsequently, particle j changes its 
velocity for iteration k+1 based on the best positions (i.e. locally and globally) in addition to its velocity 
from iteration k with this Equation (3): 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝜔𝜔𝜔𝜔𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)+ 𝑐𝑐𝑐𝑐1𝑅𝑅𝑅𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�+ 𝑐𝑐𝑐𝑐2𝑅𝑅𝑅𝑅 𝑅G𝑃𝑃𝑃𝑃𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) − 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘)�  (3) 

Where, ω is the inertia factor, which is conducted to regulate the effect of the previous velocities on the 
present velocity. The term c1 is the self-confidence, and the term c2 is the swarm-confidence factors. R is 
a random number that can change from 0 to 1. The position of particle j in iteration k+1 can be computed 
using the improved velocity as follows: 

 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1) = 𝐴𝐴𝐴𝐴𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘) + 𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗(𝑘𝑘𝑘𝑘 + 1)        (4) 

The value of a particle is determined by an objective function that computes the difference between the 
particle and its optimum solution, as follows: 

 
Figure 2: Fundamental illustration of grey prediction frameworks [23]. 

 

The Grey theory models have conventionally been calibrated using the conventional least square's 
approaches. However, since the problem is nonlinear in nature, a strictly least square's solution may not 
suffice to adequately address this issue. To avoid the very long trial-and-error process, PSO can be utilized 
to enhance the Grey models' performance. The following section will review PSO and then describe the 
GMC (1, N) learning algorithm's main steps when used in conjunction with PSO.  

22..11..11 TTrraaiinniinngg  GGMMCC  ((11,,  NN))  bbyy  PPSSOO  
In [7] are proposed Particle Swarm Optimization (PSO) as a different evolutionary technique to existing 
algorithms. PSO draws upon the behaviour of real swarms, such as fish schools and bird flocks, and utilizes 
simple structures with a clear physical meaning for its optimization methodology. The algorithm forms a 
population of individuals-known as particles-where each behaves like an individual solution to the model, 
represented in an N-dimensional space. Each particle adjusts its location within this space using its own 
experience and the experience of its neighbours with regard to their current positions, velocities, and best 
previous positions. Unlike traditional algorithms that require the objective function to be differentiable, 
PSO is not constrained by such assumptions about the problem being solved. This makes it uniquely 
suitable for optimizing Grey model parameters without relying on the standard algorithms. 

In this part, the primary steps of GMC(1, N) are depicted and its optimization procedure using PSO 
discussed. As GMC(1, N) aims to show the long-term behaviour of data and minimize the effect of random 
occurrences by conducting the AGO on the raw data, the first operation for building GMC(1, N) is to 
applying the initial Accumulated Generating Operation to the raw data. To calibrate the GMC(1, N) model, 
a suitable optimization technique such as PSO algorithm is employed for its potential to enhance complex 
numerical functions. Subsequently, an Inverse Accumulated Generating Operation (IAGO) is employed for 
the prediction of Remaining Useful Life (RUL). Figure 2 displays a schematic diagram of PSO-based Grey 
model detailing its modelling process. The modelling process is outlined in the following section: 

     Step #1: Examine the raw RUL data series as: 

𝑋𝑋𝑋𝑋1
(0) = �𝑥𝑥𝑥𝑥1

(0)(1 + 𝑟𝑟𝑟𝑟),  𝑥𝑥𝑥𝑥1
(0)(2 + 𝑟𝑟𝑟𝑟), … , 𝑥𝑥𝑥𝑥1

(0)(𝑛𝑛𝑛𝑛 + 𝑟𝑟𝑟𝑟)�, and 

𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗
(0) = �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(0)(1),𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(0)(2), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

(0)(𝑝𝑝𝑝𝑝), … , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗
(0)(𝑝𝑝𝑝𝑝 + 𝑛𝑛𝑛𝑛)�,  

where 𝑗𝑗𝑗𝑗 = 2,3, … ,𝑁𝑁𝑁𝑁, s is the delay period of the system, the raw RUL data series has a length of p, while 
the number of values to be estimated is indicated by n. 
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The fitness value, f (Aj), is calculated by comparing the target 
output x̂(0) (k) to the predicted output x (0) (k) based on the updating 
of the particles (i.e., solutions).

Step #3: In a new iteration compute the new particle velocity 
and particle position using formula in Equations (3) and (4), res-
pectively, then update the model variables in Equation (2).

Step #4: If the value of error is within the model’s requirements 
or a set number of epochs have been completed, the calibration of 
the model will be finished. If not, it will go back to Step #3.

Step #5: Set the best parameters Bj.

Step #6: 1- IAGO can be utilized to acquire the anticipated va-
lues. The mathematical equation is as follows:

Fig. 3. Illustrative diagram of GMCPSO(1, 1) model.

III. Experimental Work
The diminishment of a battery’s effectiveness is associated with 

multiple processes, and its decline follows a nonlinear manner. 
Consequently, battery aging data must be acquired to develop an 
RUL prediction model and consider its accuracy and robustness. 
The Prognostics Centre of Excellence at NASA Ames provides 
a widely-utilized battery dataset [17]. This dataset includes four 
types of batteries packs (#5, #6, #7, and #18). Figure 3 illustrates 
the decrease in battery capacity that is present in the dataset.

Fig. 4. Battery capacity decay trend that is present in the dataset.

The principle of Constant Current Constant Voltage (CC-CV) 
is a frequently employed technique for battery charging. In this 
process, the current is first kept at a constant level of 1.5 A until 
the voltage reaches a limit of 4.2 V. After this, the voltage remains 
fixed while the current gradually decreases to 20 mA, thus comple-
ting the CC-CV charging process (see Figure 4). For discharging, 
four batteries are typically discharged at a constant current of 2 A 
until their respective voltages reduce to 2.7 V, 2.5 V, 2.2 V, and 2.5 
V respectively.

Fig. 5. illustrates the Constant Current-Constant Voltage process used in 
the NASA dataset [16].

The experiment persisted until the measured actual capacity 
of each battery fell below 70% of its rated 2Ah. This Aging Point 
Threshold (APT) denoted a substantial decline in performance, si-
gnifying the point at which further exploration yielded diminishi-
ng returns. These data points are well-established in the scientific 
community and have been actively incorporated in current studies 
[3], [12].

A. Main Steps in GMC(1,1) Modelling
Input for GM(1,1) Time Series Model:

− Time Series Data: The primary input for the GMC(1,1) 
model is a univariate time series dataset.

− This dataset typically includes a sequence of observati-
ons recorded over equally spaced time intervals.

Data Preprocessing:

− Ensure that the time series data is in a suitable format for 
analysis.

− Handle any missing values or outliers in the data.

Grey System Modeling:

− Original Data Sequence: Transform the original time se-
ries data into a first-order accumulated series.

− Establishment of Grey Differential Equation (GDE): De-
velop a differential equation based on the accumulated series.

− Parameter Estimation: Estimate the model parameters, 
which include the development coefficient and the grey input 
coefficient.

GM(1,1) Model Solution:

− Solve the established grey differential equation to obtain 
the predicted values of the original time series.

Model Evaluation:

− Assess the performance of the GMC(1,1) model using 
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𝑁𝑁𝑁𝑁

𝑘𝑘𝑘𝑘=1
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appropriate metrics.

Compare the predicted values with the actual values to validate 
the model’s accuracy.

B. Results 
To optimize the GMC(1, N) coefficients, the historical dataset 

was split into two separate sets: one for computing the model (aro-
und 48%) and the other for testing purposes (around 52%). The 
Python environment was utilized for the creation and simulation 
of the RUL model. The designed model was organized as outlined 
below:

Step #1: the mathematical operation (1-AGO) is used to enhan-
ce the linearity of the raw data and minimize any randomness pre-
sent in the measured samples.

Step #2: the optimization algorithm PSO is used to train the 
GMC(1, N) model, as was mentioned in the previous section.

Step #3: The RUL value is calculated by performing an IAGO 
(Inverse Accumulated Generating Operation).

For the PSO algorithm, 70 particles were used with self-con-
fidence factor C1 set to 1.4 and swarm-confidence factor C2 set to 
1.4. The inertia weight ω was adapted over 150 epochs, decreasing 
from 0.8 to 0.2. At the end of this process, the total error was satis-
factory (RMSE=1.03).

In this section, the development of another separate Grey mo-
del was conducted using the conventional Least Squares (LS) met-
hod. Three steps were involved throughout this process, with Steps 
1, 2, and 3 being similar to those presented in the above mention’s 
section. The Grey variables of Equation 2 were then determined by 
applying the traditional least squares method. 

After training a model, it becomes essential to validate the mo-
del to evaluate its prediction quality and the accuracy of its parame-
ters. This will provide the designer with confidence in the model 
and indicate whether any revisions to the training process are nece-
ssary. Model validation is a procedure that involves several steps. 
The exhibitions of the frameworks utilized in this exploration were 
determined using Mean Absolute Percentage Error (MAPE) as 
follows: 

where,

mesk: Measured RUL; 
prek: Predicted RUL;

mes, pre: Average of the measured value and predicted value, 
respectively; and 
n: The number of measured data.

In this section, the optimization process was applied to the final 
Grey theory models. Following this, a previously unused testing 
dataset was utilized to evaluate the performance of the models, 
which had not been used during the optimization stage. The outco-
mes acquired for the GMCPSO(1,1) model and GMC(1,1) model 
are exhibited in Figure 4 and Figure 5, correspondingly.

Fig. 6. RUL prediction using GMCPSO(1, 1) model.

The red-solid line indicates the capacity degeneration pro-
cess, while the blue dash line denotes the predicted capacity by 
GMCPSO(1, 1) model. The final Grey model parameters obtained 
are listed in Table 1:

Table 1

The final Grey model parameters for GMCPSO(1, 1) model.

a1 a2
MAPE

0.00337 0.00337 0.019

Fig. 7. RUL prediction using GMC(1, 1) model

The red-solid line indicates the capacity degeneration process, 
while the blue dash line denotes the predicted capacity by GMC(1, 
1) model. The final Grey model parameters obtained are listed in 
Table 2:

Table II

The final Grey model parameters for GMC(1, 1) model.

a1 a2
MAPE

0.00393 522.565 0.03811

The results of this study reveal that the Mean Squared Predicti-
on Error (MSPE) for the PSOGMC(1,1) model was 0.019, while the 
MSPE for the GMC(1, 1) model was 0.03811. This implies that the 
proposed PSOGMC(1,1) model is more precise than the GMC(1, 
1) model in predicting RUL. This is due to the fact that the PSO-
GMC(1,1) model utilizes PSO for the optimization of GMC(1, 1) 
model parameters. The PSO algorithm is an iterative optimization 
method that uses a population of particles to search for optimal so-
lutions. By using this approach, the PSOGMC(1, 1) model can find 
better solutions than those found by traditional methods such as 

whether any revisions to the training process are necessary. Model validation is a procedure that involves 
several steps. The exhibitions of the frameworks utilized in this exploration were determined using Mean 
Absolute Percentage Error (MAPE) as follows:  

𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛�

�𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘 − 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘�
𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑘𝑘

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
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Figure 6: RUL prediction using GMCPSO(1, 1) model. 

 

The red-solid line indicates the capacity degeneration process, while the blue dash line denotes the 
predicted capacity by GMCPSO(1, 1) model. The final Grey model parameters obtained are listed in Table 
1: 
 

Table 1: The final Grey model parameters for GMCPSO(1, 1) model. 
𝑎𝑎𝑎𝑎1 𝑎𝑎𝑎𝑎2 MAPE 
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LS algorithms. Additionally, it was found that the true Remaining 
Useful Life (RUL) of the battery was 84 charge-discharge cycles in 
total. The RUL prediction results achieved by GMC(1, 1) and PSO-
GMC(1,1) models were 119 and 87 respectively; demonstrating that 
PSOGMC(1,1) model performed better than GMC(1, 1).

This study employs a Particle Swarm Optimization (PSO)-
based Grey Prediction Model. This approach offers potential 
advantages:

Simplicity: Grey models are generally simpler to construct and 
implement compared to complex deep learning models [3].

Limited Data: Grey models can often perform well with li-
mited data, which can be advantageous in situations where large 
datasets are unavailable.

Optimization: The use of PSO to optimize the grey model’s 
coefficients may enhance its accuracy.

Grey theory modeling is a powerful tool for predicting the 
RUL of lithium-ion batteries. This approach can be employed to 
gauge the RUL of a battery based on its current usage and state 
patterns. Once a prediction of the RUL has been calculated, it can 
be used to take decisions about when to replace a battery. For in-
stance, if a battery has an estimated RUL of two years but is only 
being used once per week, then it may not need to be replaced until 
after 3 years have passed. On the other hand, if a battery has an esti-
mated RUL of one year but is being used multiple times per day, 
then it may need to be exchanged sooner than anticipated in order 
to ensure optimal functioning. However, like any approach, it also 
has its limitations. One limitation of this approach is the reliance on 
optimization techniques such as PSO. While PSO can effectively 
optimize the coefficients of the grey prediction model, it may requ-
ire significant computational resources and time to find the opti-
mal solution. This can be a drawback in real-time or time-sensitive 
applications where quick predictions of RUL are required.

IV. Conclusions
This study presents a novel grey modelling methodology with 

the objective of effectively forecasting the Remaining Useful Life 
(RUL) of lithium-ion batteries (LIBs). The evaluation of the propo-
sed methodology is conducted utilizing the dataset on battery char-
ge-discharge cycles provided by NASA. The findings indicate that 
the RUL prediction model possesses the capability to significantly 
enhance the dependability and security of energy storage systems.

The grey theory modelling approach combines grey system 
theory and optimization techniques to model the battery’s histo-
rical data and extract valuable information for predicting its RUL. 
The proposed modelling method is carefully compared with exi-
sting Grey modelling methods in terms of accuracy and computa-
tional efficiency. The experimental findings demonstrate that the 
suggested approach outperforms the current model in both output 
accuracy and computational efficiency.

Furthermore, this paper provides insights into how to further 
improve the accuracy of RUL prediction by incorporating addi-
tional factors such as current, voltage, temperature, etc., into the 
model. Further research and development are necessary to address 
above mentioned limitations and enhance the accuracy and reliabi-
lity of RUL estimation for practical applications.
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Development of transformers with natural ester and 
cellulose or aramid insulation

Ramazan Altay, İrem Hazar, Mahmut Aksoy, Hakan Aktay, Jean-Claude Duart, Radoslaw Szewczyk

Summary — This study describes selected research studies per-
formed for developing design rules for power transformers using 
natural esters. The presented simulation results verified adequacy of 
design rules and allowed for adjustments needed for implementing 
the new insulation system vs. the one based on mineral oil and cellu-
lose-based solid insulation. They were also used as a base for the next 
transformer design combining natural ester with aramid insulation.

Keywords — Natural ester liquid, electric field distribution, com-
putational fluid dynamics, aramid insulation

I. Introduction

Modernization of distribution networks increasingly uses 
transformers utilizing advanced insulation systems based 
on solid and fluids that have been developed in the recent 

decades. Taking into accounts new usages of energy, whether they 
are related to the need for charging electrical vehicles, the integra-
tion of renewable energy (wind, solar) or the increase of population 
in cities leading to higher power demand, it is a constrain that leads 
to higher stress for electrical equipment like transformers or cables. 
The manufacturers of such equipment have then to consider evolu-
tion of the designs and may need to adopt new materials. Amongst 
those new materials we can mention about the new generation of 
core steel with low losses but also new insulation materials that will 
tend to replace the historical materials being used. This is particu-
larly true in liquid filled transformers where cellulose paper and 
pressboard combined with mineral oil have been the most com-
mon materials used for several decades. The advanced material so-
lutions offer extended lifetime to the insulation system, increased 
overloadability for the transformers, increased power density, as 
well as equipment compactness and higher fire resistance or im-
proved sustainability. The last item is mainly related to the usage of 
natural ester that lowers the carbon footprint as it is biodegradable.

For the solid insulation the most used material is produced in 
a paper and a pressboard form but made of synthetic fibers. Those 
fibers were invented in the late 1950’s and result from an improve-
ment of the known nylon chemistry. However, a modification of 

the nylon molecule with addition of aromatic rings led to the in-
vention of aromatic polyamides, known as aramid fibers. Typical 
historical applications of aramid-based insulation in liquid filled 
transformers include on-board traction transformers, wind turbine 
step-up transformers and transportable mobile transformers for 
emergency or temporary use. In recent years, aramid insulation has 
been successfully evaluated and implemented at several distribu-
tion system operators (DSOs) in transformers utilizing sustainable 
peak loading concept or when looking for more grid resiliency [1].

It is also important before looking into a new application to 
consider design simulations that will help to assess such materi-
als. Some extended work needs to be conducted to understand ap-
plicability of the advanced design in such new applications. For 
example, in wind turbine applications for offshore installations the 
benefit that advanced materials can have on the design can impact 
the overall design of the transformers but also the nacelle, where 
transformers are generally located.

Transformers for solar applications are different from regular 
transformers in two ways. They can be exposed to a considerable 
amount of harmonic content due to DC/AC conversion and a typi-
cal daily loading cycle that is dependent on the daily sunlight cy-
cle. The daily sunlight can be typically described as a bell-curve 
as shown in Fig. 1. Both phenomena will have an impact on the 
temperature rise of the different transformer parts. Two tools have 
been developed to predict the impact of the harmonics and to take 
the cyclic daily load into account. A reference transformer of 1600 
kVA was evaluated, and different insulation systems have been 
compared.

For larger power transformers the studies of the electrical field 
distribution as well as the impact on the cooling from those new 
materials are important and need to be studied. Adapted numeri-
cal model will help to assess the impact on operating temperature 
inside the transformer while external conditions like ambient tem-
perature must be considered. A 70 MVA transformer design opti-
mization integrating natural esters has been studied.

Fig. 1. Example of daily sun profile.

Journal 
of Energy

journal homepage: http://journalofenergy.com/

VOLUME 72 Number 3 | 2023 

(Corresponding author: Ramazan Altay)
Ramazan Altay, İrem Hazar and Mahmut Aksoy are with the BEST Balikesir 

Elektromekanik Sanayi Tesisleri A.S., Balikesir, Turkey (e-mails: ramazan.
altay@besttransformer.com, irem.hazar@besttransformer.com, irem.hazar@
besttransformer.com)

Hakan Aktay is with the Opti-Consult, Konak/İzmir, Turkey (e-mail: hakan.
aktay@opti-consult.org)

Jean-Claude Duart is with the DuPont Specialty Products Operations Sarl, 
Geneva, Switzerland (e-mail: JEAN-CLAUDE.DUART@dupont.com)

Radoslaw Szewczyk is with the DuPont Polska Sp. z o.o., Warsaw, Poland 
(e-mail: radoslaw.szewczyk@dupont.com)

Ramazan Altay, İrem Hazar, Mahmut Aksoy, Hakan Aktay, Jean-Claude Duart, Radoslaw Szewczyk, Development of transformers with natural ester and cellulose or 
aramid insulation, Journal of Energy, vol. 72 Number 3 (2023), 14–21 
https://doi.org/10.37798/2023723506    
© 2021 Copyright for this paper by authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)



15

As a second step the design needs to be optimized and the con-
struction parameters as well as the safety margins will need to be 
chosen for the windings to prepare pilot units to be produced. This 
is why a study on these construction elements has been carried out. 
Historical behavior of materials as well as thermal analysis must 
help to select the proper levels for designing the windings safely.

II. Insulation Systems for Distribution and Power 
Transformers

Distribution transformers have a general winding construction 
which differs from larger power transformers since they operate at 
lower voltages, generally below 36 kV. However, in recent years 
we have seen such construction styles to be used in transformers 
up to 66 kV, particularly in wind turbine transformers. Generally, a 
distribution winding style uses foil winding in the low voltage coil 
and layer winding with conductors, round or rectangular, in the 
high voltage coil as shown in Fig. 2.

Fig. 2. Example of winding construction for distribution transformers 
with aramid-based insulation system.

Fig. 3 shows example constructions of various insulation sys-
tems for power transformers. Typical arrangement for LV and HV 
disc windings is shown with different extent of aramid insulation 
utilized in different winding constructions. In semi-hybrid system, 
only the conductor insulation uses aramid insulation paper. With 
this construction the impact of overheating of the windings leading 
to extensive gassing from the cellulose components in the winding 
area is limited as aramid degradation is not expected until copper 
reaches extreme temperatures. In hybrid system, the use of aramid 
extends from conductor insulation towards pressboard compo-
nents in vicinity of conductor. But there are still cellulose-based 
materials used for other insulation components in the winding as-
sembly. Those cellulose-based components together with overheat-
ed liquid could give DGA indications on thermal problems within 
the transformer.

The most insensitive insulation system to higher tempera-
tures resulting from operation or from external factors (like higher 
power demand or higher ambient temperatures) would be full high 
temperature insulation systems or “hybrid plus” insulation systems 
where aramid insulation is combined with ester fluids. In these 
systems, the use of aramid is most extensive for different insula-
tion parts, and the distance from hot conductors to cellulose com-
ponents may be significant. In some cases, cellulose components 
would not be used in the transformer construction at all. In such 
cases, the liquid may be the only component generating gasses and 
data useful for conventional transformer diagnostics. However, 
some work to look for tracers from aramid thermal degradation has 

been engaged in recent years leading to better understanding of the 
ageing protocols [2].

a)  

b)   

c) 
Fig. 3. Example constructions of various insulation systems with aramid: 
a) semi-hybrid, b) hybrid, c) “hybrid plus” with ester (white color 
indicates aramid insulation).

III. Simulation Studies of Various Transformer 
Designs

The use of advanced design tools has allowed optimization of 
the transformer design over the years. The work reported in this 
paper refers to two studies: the first one on a 1600 kVA unit for PV 
solar application, and the second study has been done on a power 
transformer 70 MVA integrating natural ester as a cooling and in-
sulating fluid.

A. Simulation study of 1600 kVA solar power 
transformer

1. Influence of harmonics
The current generated by the PV panels is DC and in order 

to connect the solar plant output to the grid, the current has to be 
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inverted to AC. The inverted current is far from the ideal sinusoidal 
shape and thus contains a high level of harmonics. Most of the 
distribution companies have limits on the amount of harmonics 
one can connect to their grid (typical 5%, or in Europe even 2.5% 
total harmonic distortion, THD). One way or the other, the current 
must be filtered by harmonic filters and that can be done before or 
after transformation. In large solar power plants there are typically 
2 transformations,

e.g. a 100 MVA plant could have 50 units of 2000 kVA going 
from 400 V to 20 kV and then 1 unit of 100 MVA from 20 kV to 110 
kV (or higher). It is cheaper to opt for 1 harmonic filter before the 100 
MVA transformer instead of installing 50 filters before each of the 
2000 kVA transformers. Let us consider, for the case of argument, 
that the AC current entering the typical distribution transformer is 
not filtered. In that case, the transformer manufacturer needs to 
know the harmonic content of the current entering the transformer. 
There are 4 ways this information is given to the manufacturer:

1. The customer knows about harmonic problems and over-
rates the transformer and orders the transformer as such. 
(In other words, he knows the factor-K.)

2. The customer gives the THD or gives the value of each 
harmonic in %. In the first case the supplier shall have to 
convert the THD into a % for each harmonic.

3. The customer gives the K-factor (different from factor-K). 
The supplier shall then multiply the additional losses with 
this K-factor, in order to predict the real losses generated 
in the transformer.

4. The customer has never heard of harmonics. In that case, 
the manufacturer has to follow a guideline to assume a 
certain K-factor.

Typically, with no information the transformer should be cal-
culated with a K-factor of 15 [3]. The relation between THD and 
K-factor will be explained later. To summarize, harmonic content 
can be translated in a K-factor. This factor is used to multiply the 
additional losses in the transformer, resulting in higher real load 
losses and thus resulting in higher temperatures.

2. K-factor/factor-K tool
A tool has been developed to calculate the K-factor and factor-K. 

It is important to understand the difference between the two factors. 
The K-factor is the factor the transformer manufacturer has to use 
to multiply the additional losses. That way the real losses and tem-
perature can be estimated. The factor-K is a factor by which one can 
derate or upgrade a transformer to cope with the harmonic content or 
to give an equivalent sinusoidal rate. Table I provides an example of 
a harmonic spectrum till the 25th harmonic that will be used of the 
optimization of the 1600 kVA design (cellulose, mineral oil).

Table I 

Percentual Part of Nth Harmonic in Nominal Current

harmonic
I h (%)
In %Inom

1 86.12693
3 36.58379
5 21.95027
7 15.67877
9 12.19460
11 9.97740
13 8.44241
15 7.31676

17 6.45596
19 5.77639
21 5.22626
23 4.77180
25 4.39005

Inom 100.0

Using industry experience [4] and the example of the harmonic 
spectrum, the tool allows to derive a THD value of 0.59 corre-
sponding to the same harmonic content as indicated in the Table II.

Table II 

Output Example of The Calculation Tool

thd 0.59
alfa thd/0.463 1.27429806
i1 (1/1+thd^2)^0.5 1 86.1269258
ix alfaix/x 3 36.5837914

5 21.9502748
7 15.6787677
9 12.1945971
11 9.97739764
13 8.44241339
15 7.31675827
17 6.45596318
19 5.77638811
21 5.22625591
23 4.77179887
25 4.39005496

Then the tool calculates the K-factor which is in this case 
15.1962. For deriving the factor-K, we need transformer losses val-
ues as show in Table III.

Table Iii.  
1600 KVA Transformer Losses

Calculated additional losses HV [W] 
Calculated additional losses LV [W] 
DC losses HV [W]
DC losses LV [W] 
DC losses leads [W]
Additional losses outside windings [W]
Additional losses/ DC losses [%]

617
262
8280
5427
410
318
8.5

The resulting factor-K is then calculated together with the der-
ating factor. Values are reported in Table IV.

Table IV 

Derating Factor and Factor-K for 1600 KVA Transformer

Derating-factor with harmonic content 0.862
Factor-K to determine equivalent sinusoidal load 1.160

The interpretation of this information is the following: If the 
1600 kVA transformer is loaded with this harmonic content

as described in the example, the transformer can be loaded with 
maximum 1380 kVA to avoid overheated and accelerated degra-
dation of the insulation system based on cellulose. On the other 
hand, if the nameplate of the transformer indicates 1600 kVA with 
K-factor 15 explicitly mentioned, the transformer could be loaded 
with a sinusoidal load of 1856 kVA.
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3. Influence of load cycles
It is trivial, that output of PV cells follows the cycle of the day-

light. During the night we can assume that only no-load- losses 
will be present. During the day the output follows the cycle of 
the sun. This results in a bell-shape load profile. In the theoretical 
profile, and assuming a daily 12 h daylight, sigma of the bell curve 
is 2 h resulting in 68% of the daily energy being concentrated in a 
period of 4 h (the +/-3 sigma being the 12 h daylight is then theo-
retically 99.7% of the daylight). The load will result in losses that 
in their turn result in temperature variations. The goal of the study 
is to investigate whether it is possible to design an ideal cooling 
structure that can cope with those loads. Aging of insulation mate-
rial and general safety limits must be evaluated and compared for 
different insulation/cooling systems. Intuitively we can already see 
that larger units (with important time-constants) could probably be 
overloaded. By the time the transformer reaches critical tempera-
tures, the load is already going down. There are some guidelines to 
come up with dynamic temperature calculations. However, these 
analytical formulas are not sufficient to describe the models we are 
investigating. Therefore, a new calculation tool was created and 
will be describe further.

4. Load cycle tool
The model is based on a 4-body mass heat exchange. The orig-

inal theoretical model was a 3-body mass heat exchange solved 
analytically [5]. In this study the model was expended to 4-body 
mass and the problem (system of four ordinary differential equa-
tions) was solved by the numerical method Runge-Kutta 4th order.

The four bodies in our system are: core, LV winding, HV wind-
ing and oil-tank while originally LV and HV windings were treated 
as one single body. The steady state temperature rises are consid-
ered for core, LV and HV, the rise over the average oil temperature. 
Specific heat for the different materials is filled in with the values 
from original model. In what follows, the specific heat for aramid 
and ester oil were kept with the same value as for cellulose and 
mineral oil. Load is then input in the calculation tool for the 1600 
kVA, and it is assumed a cold start and a load of continuous 100%, 
which then results in the following temperature rises as shown in 
Fig. 4.

Fig. 4. Temperature rise for 1600 kVA transformer.

We can see that after around 50000 seconds (14 h) the trans-
former reaches steady state conditions. 73°C for core, 65°C for LV 
and HV, 48°C for average oil (48 / 0.8 = 60). This is trivial because 
our model is based on the calculated steady state values. All tem-
peratures are temperature rises over ambient.

5. Evaluation of reference 1600 kVA transformer
As a first exercise we are going to evaluate what is happening 

with the temperatures with a typical loading cycle. Then we are 
going to look at what possibilities there are with regard to over-
load when we replace the insulation materials and the oil. We are 
assuming daylight between 7 AM and 7 PM, if we apply the Bell-
curve model then we can generate a load profile with the equation 
(1):

Where µ is the average time between 7 AM and 7 PM, 13.5 
and ơ is the standard deviation of 2 h. This gives a per unit graph 
were the total surface under the curve is 1. In order to translate this 
in % load we have to divide by the maximum value (at 13.5 h) 
and multiply by 100. For the reference transformer, this results in 
the following 2 days cycle as shown in Fig. 5, assuming cold start 
at midnight of the first day, and only no-load losses till 7 AM are 
show in Table V.

Table V

Calculated Values for Temperature Rises in 1600 KVA 
Transformer

Core rise LV rise HV rise
50.43386539 50.99716039 51.01126495

Gradient max 14.52883171 Average oil rise 36.48243324
Hot-spot rise 61.58475643 Top oil rise 45.60304155

In this case we see that the temperatures are far under what is 
allowed by standards (60/65/78°C) as we only reach 46/51/62°C for 
the top oil rise, average winding rise and hot spot rise.

Fig. 5. Temperature rise, 2-day cycle for 1600 kVA transformer.

An overload factor is then applied. The goal is to see how much 
peak load we can apply and still be safe with regards to tempera-
ture. We are going to evaluate the existing design with two insula-
tion systems: a mineral oil/cellulose system and aramid/synthetic 
ester system. This means in a first step, there is no evaluation of an 
optimized transformer with different insulation material. This will 
be done in a next stage.
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as described in the example, the transformer can be loaded with maximum 1380 kVA to avoid overheated and accelerated 
degradation of the insulation system based on cellulose. On the other hand, if the nameplate of the transformer indicates 
1600 kVA with K-factor 15 explicitly mentioned, the transformer could be loaded with a sinusoidal load of 1856 kVA. 

3) Influence of load cycles 
It is trivial, that output of PV cells follows the cycle of the daylight. During the night we can assume that only no-load-
losses will be present. During the day the output follows the cycle of the sun. This results in a bell-shape load profile. In 
the theoretical profile, and assuming a daily 12 h daylight, sigma of the bell curve is 2 h resulting in 68% of the daily 
energy being concentrated in a period of 4 h (the +/-3 sigma being the 12 h daylight is then theoretically 99.7% of the 
daylight). The load will result in losses that in their turn result in temperature variations. The goal of the study is to 
investigate whether it is possible to design an ideal cooling structure that can cope with those loads. Aging of insulation 
material and general safety limits must be evaluated and compared for different insulation/cooling systems. Intuitively 
we can already see that larger units (with important time-constants) could probably be overloaded. By the time the 
transformer reaches critical temperatures, the load is already going down. There are some guidelines to come up with 
dynamic temperature calculations. However, these analytical formulas are not sufficient to describe the models we are 
investigating. Therefore, a new calculation tool was created and will be describe further. 

4) Load cycle tool 
The model is based on a 4-body mass heat exchange. The original theoretical model was a 3-body mass heat exchange 
solved analytically [5]. In this study the model was expended to 4-body mass and the problem (system of four ordinary 
differential equations) was solved by the numerical method Runge-Kutta 4th order.  
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Where µ is the average time between 7 AM and 7 PM, 13.5 and ơ is the standard deviation of 2 h. This gives a per unit 
graph were the total surface under the curve is 1. In order to translate this in % load we have to divide by the maximum 
value (at 13.5 h) and multiply by 100. For the reference transformer, this results in the following 2 days cycle as shown 
in Fig. 5, assuming cold start at midnight of the first day, and only no-load losses till 7 AM are show in Table V. 
 

TABLE V. CALCULATED VALUES FOR TEMPERATURE RISES IN 1600 KVA TRANSFORMER 

 
Core rise LV rise HV rise 

50.43386539 50.99716039 51.01126495 
   

Gradient max 14.52883171 Average oil rise 36.48243324 
Hot-spot rise 61.58475643 Top oil rise 45.60304155 

 

In this case we see that the temperatures are far under what is allowed by standards (60/65/78°C) as we only reach 
46/51/62°C for the top oil rise, average winding rise and hot spot rise. 
 

 
Figure 5. Temperature rise, 2-day cycle for 1600 kVA transformer. 

An overload factor is then applied. The goal is to see how much peak load we can apply and still be safe with regards to 
temperature. We are going to evaluate the existing design with two insulation systems: a mineral oil/cellulose system and 
aramid/synthetic ester system. This means in a first step, there is no evaluation of an optimized transformer with different 
insulation material. This will be done in a next stage. 
 

TABLE VI. TEMPERTURE RISE FOR NO OVERLOAD AND SHORT TERM OVERLOAD CONDITIONS 

 No overload Short term overload 
 Winding 

rise 
Top oil 

rise 
Hotspot 

rise 
Overload 

factor 
Top oil 

rise 
Hotspot 

rise 
Overload 

factor 
Mineral oil / cellulose 64 57 77 1.13 74 102 1.31 

Synthetic ester / aramid 102 89 122 1.44 99 136 1.52 
 
The Table VI shows the possible overload if we replace in the existing design the insulation and/or oil. The values in 
yellow are the limiting values. The existing design can have a peak load of 1.13 times 1600 kVA. With the existing load 
cycle, the temperatures would still be safe. If we would have filled the transformer with synthetic ester and insulated with 
aramid paper and board, we could load the transformer with a peak load of 1.44x1600. Similarly, we can apply the short-
term overload criteria for evaluating the maximal peak load. It has to be stressed that just replacing the insulation structure 
and the oil is not really an optimal design. Basically, this means at this moment that the optimal 1600 kVA (mineral oil / 
cellulose) transformer can be overloaded with no ageing with a factor 1.13. The non-optimal synthetic ester / aramid can 
be overloaded with a factor 1.44. It also needs to be mentioned that the short-term overload situation results in 
considerable ageing in the case of mineral oil / cellulose, while in the ester / aramid combination there is still no aging. 
In a next step we need to evaluate optimal designs of every insulation combination.  

6) Comparison of optimal designs 
The 1600 kVA transformer with different insulation structures is then optimized and the possible overload factor for a 
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Table VI

 Temperture Rise for no Overload and Short Term 
Overload Conditions

No overload Short term overload
Winding 
rise

Top oil 
rise

Hotspot 
rise

Overload 
factor

Top oil 
rise

Hotspot 
rise

Overload 
factor

Mineral 
oil / 
cellulose

64 57 77 1.13 74 102 1.31

Synthetic 
ester / 
aramid

102 89 122 1.44 99 136 1.52

The Table VI shows the possible overload if we replace in the 
existing design the insulation and/or oil. The values in yellow are 
the limiting values. The existing design can have a peak load of 
1.13 times 1600 kVA. With the existing load cycle, the tempera-
tures would still be safe. If we would have filled the transformer 
with synthetic ester and insulated with aramid paper and board, we 
could load the transformer with a peak load of 1.44x1600. Simi-
larly, we can apply the short- term overload criteria for evaluating 
the maximal peak load. It has to be stressed that just replacing the 
insulation structure and the oil is not really an optimal design. Basi-
cally, this means at this moment that the optimal 1600 kVA (min-
eral oil / cellulose) transformer can be overloaded with no ageing 
with a factor 1.13. The non-optimal synthetic ester / aramid can be 
overloaded with a factor 1.44. It also needs to be mentioned that 
the short-term overload situation results in considerable ageing in 
the case of mineral oil / cellulose, while in the ester / aramid com-
bination there is still no aging. In a next step we need to evaluate 
optimal designs of every insulation combination.

6. Comparison of optimal designs
The 1600 kVA transformer with different insulation structures 

is then optimized and the possible overload factor for a derated 
transformer that would have the same losses and impedance as the 
1600 kVA is used. The initial transformer mineral oil-cellulose is 
already designed. In the Table VI, we saw that this transformer 
could be overloaded by a factor 1.13 without ageing and with a fac-
tor 1.31 if we allow short term overload temperatures. The overload 
factor without aging leads to the following calculation deriving the 
optimized design of 1400 kVA.

1600 / 1.13 = 1416, we round to the nearest 50 kVA so we opti-
mize the design to 1400 kVA. While an optimize design with al-
lowed short term overload will lead to a different optimized design 
of 1200 kVA. Then, the maximum temperature rises are derived 
from the calculation tool once using the design data of the trans-
former with a peak load of 1600 kVA. In the Table VII, the two 
combinations considered and allowed temperature rises are shown 
(ambient is considered maximum 40°C).

Table VII 

Temperature Rise Limits for no Overload and Short-Term 
Overload Conditions

Insulation structure No overload Short-time overload
top oil winding hotspot top oil hotspot

Mineral oil / cellulose 60 65 78 75 120
Synthetic ester / aramid 90 125 150 100 180

After optimizing the two combinations at 1600 kVA, the tem-
peratures were derived, applying the design in the load cycle calcu-
lator. Then overload factors were found (one for no aging and one 
for short term overload.) The resulting transformer ratings and their 
temperatures are depicted below. The temperature results shown in 

Table VIII are all based on a load of 1600 KVA.

Table VIII

Temperature Limits for Simulated Ratings to 1600 KVA

Top oil Winding Hotspot
1600 kVA-60-65-78 46 51 62
1400 kVA-60-65-78 55 62 75
1200 kVA-60-65-78 66 94
1600 kVA-90-125-150 62 95 111
1400 kVA-90-125-150 74 108 127
1250 kVA-90-125-150 85 139

For example, a 1250 kVA-90-125-150 is a synthetic ester / ara-
mid design, if loaded with a peak load of 1600 kVA and with the as-
sumed bell-curve load, top oil would rise 85°C and hotspot would 
have a rise of 139°C (well below allowed limits). The values shown 
in bold are the values higher than what would be allowed for con-
tinuous condition. A mineral oil / cellulose design transformer 
1200 kVA loaded at 1600 kVA would be reaching temperatures that 
would degrade dramatically the insulation system.

B. Simulation study of 70 MVA power 
transformer

In this study, electric field intensity distribution of 70MVA, 
36/12 kV power transformer with natural ester and cellulose was 
investigated in ANSYS Maxwell V2022 R2 and the thermal effect 
of natural ester oil on the windings was investigated in ANSYS 
FLUENT V2022 R2. The three main dielectrics used in transform-
er insulation are: transformer oil, paperboard barrier, oil-impreg-
nated paper. The relative permittivity is shown in Table IX.

Table IX 

Dielectric Properties in Function of Temperature

Relative permittivity
Temperature 25°C 90°C 130°C
Natural ester 3,3 3,0 2,9
Low density pressboard 4,4 4,4 4,5
High density pressboard 4,6 4,8 5,2

The assumptions made during the analysis are that the LV, HV 
and TAP windings are considered as a single cylinder with axisym-
metric uniform tension. Conductors are rounded to a radius of 
0.5 mm by rounding from the corners and

0.5 mm paper coating is given. The boundary condition taken 
for this finite element problem is the Dirichlet boundary condi-
tion. The limb, yoke and core are considered as the boundary and 
grounded. The transformer is subject to three main high voltage 
tests:

1. lightning impulse test,
2. short duration power frequency test,
3. long duration power frequency test.
This equivalent voltage level is referred to as the design insula-

tion level (DIL) expressed in kVrms. Thus, there is only one DIL 
inside the transformer at any one time, with maximum equivalent 
one minute power frequency voltage levels for four different tests. 
It is important to convert all these values to one minute power fre-
quency test. The highest of these values is used as excitation for the 
HV winding during simulation. As shown in Table X, design insu-
lation factors are taken for historical conversion factors. [6] Tables 
X and XIII for medium voltage transformers below 75 kV indicate 
that it can be assumed that the DIL used for mineral oil can also be 
used for esters.
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Table X

Design Insulation Factors

Condition DIL Factor
Lightning impulse 2,3

AC one-minute test level 1,0
AC one-hour test 0,8

This section presents the description of the numerical model 
that allow us to study the thermal phenomena that occur in the anal-
ysis platform. This model has been carried out using the ANSYS 
FLUENT 2022 software. Thereby, the governing equations and the 
boundary conditions of the fluid study applied to 2D section of the 
winding are used. Also, computational domain, meshing and mate-
rial properties are shown. Winding loss outputs are used as inputs 
for thermal analysis. While evaluating the losses, I2R+Eddy losses 
were evaluated homogeneously as total losses. The loss values 
used are as follows in Table XI.

Table XI

 Loss Values

75°C I2R (kW) Eddy Loss (kW)
LV Winding 100 5,5
HV Winding 141 12,2

Many properties of ester oils, such as viscosity, conductivity, 
and thermal capacity, differ from mineral oils. Table XII details 
some of those properties.

Table XII

Fluid Properties

Mineral Oil Ester Fluid
Flash Point (°C) 110–175 250-310
Fire Point (°C) 110-185 300-322
Kinematic Viscosity (cSt) (90°C) 2,3 7-8
Density (kg/dm3) (20°C) 0,83-0,89 0,9-1,0

Due to installation of the transformers in southern region of 
Turkey, it was critical to consider impact of higher ambient temper-
atures. The annual temperature distribution of this region is exam-
ined, and thermal analyses are completed according to the climate 
conditions in that specific area of Turkey. The results of the simula-
tion should present the changes with different ambient temperature 
considerations. The finite volume-based numerical method solves 
the Navier–Stokes equations, which state the conservation of mass, 
momentum and energy for a fluid flow. For an incompressible fluid 
(oils can be considered this way), the equations that state mass, mo-
mentum, and energy conservation are equations (2), (3) and

(4). On the other hand, for the solid domain, the equation that 
state energy conservation are:

∇·(ρu) = 0 (2)

(u·∇)ρu = −∇p + µ(∇ 2 u) + gρ (3)

∇·(ρCpuT ) = ∇·(k∇T ) + qs (4)

0 = ∇·(k·∇T ) + qs (5)

Where ρ, ρref , u, p, µ, g, Cp, T, k, and qs of equations (2), (3), 
(4) and (5)) are density, density of reference, velocity vector, pres-
sure, dynamic viscosity, gravity, specific heat capacity, tempera-
ture, thermal conductivity, and heat source, respectively. The right-
hand terms of (3) are the pressure force, the viscous force, and the 
buoyancy force, respectively. The latter represents the force that 
drives the flow in natural convection regime, and it is related to 
density gradients in the fluid. This equation helps to represent the 
natural convection effect in computational fluid dynamics.

IV. Development of Advanced Transformers
Integrating new materials in a design is always challenging 

as new applications require validation. The 70 MVA,

36/12 kV power transformer design is chosen for design opti-
mization. The insulation structure in 70 MVA power transformer is 
showed in Fig.6.

Fig. 6. Insulation structure of 70 MVA transformer.

The potentials of transformer core, tank and LV windings are 
defined as 0 kV, thereby regarded as grounded during the 1 min 
induced voltage test. Voltage is applied to the HV winding at the 
rate of the Design Insulation Level (DIL) coefficient. Safety factors 
are calculated by means of DIL factor for BIL. These are based on 
attached graph “DIL Factor” (from document “AC Insulation De-
sign…” [7]) and can be derived by the equation (6):

BIL Factor = BIL / AC => 2.3 (6)

Table XIII

 Factors for Conversion to One Minute (Rms) Power 
Frequency Level

Test voltage Multiplication factor
Lightning Impulse Level (BIL) ~ (1/2.30)=0.44
Switching Impulse Level (SIL) ~ (1/2.80)=0.55
Long Duration (one hour) Power Frequency Voltage ~ (1/0.80)=1.25

After calculation of DIL for 70 MVA, the transformer the one-
minute power frequency voltage 73.913 kV is taken as excitation 
for calculating. Finite element electric field analysis is performed 
using the aforementioned boundary conditions at the main insula-
tions for the design. Then, voltage and electric field distribution 
plots are shown in Fig. 7 and Fig. 8.

Historical limit curves shown in Fig. 9 are used for the AC 
analysis. When we inspect the reference table, A41-5 limit curve 
is indicating the protection level due to isolation paper and A41-6 
limit curve is indicating the protection level due to barriers. We 
are using the A41-6 limit curve as this is the safer protection level.

Safety margins in windings middle part (HV-LV) for 1 minute 
dielectric AC test are listed below. These margins are obtained by 
comparing calculated values by Finite Element analysis with the 
historical oil breakdown curve. These margins are obtained by 
comparing calculated values (red colored) of FEM analysis with 
the Weidmann oil breakdown curves (black colored). For oil duct 
numbering, please follow the direction on red colored streamlines. 
The main principle for oil duct numbering is that the direction of 
arrows is always from higher potential to lower potential. It means 
that direction is from right to left between HV/LV windings. Addi-
tionally, stress values on oil duct between HV and LV winding are 
obtained from Fig. 10 (red colored). The analysis results are below 
the current values and in the safe zone:
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Oil Duct 1 - 65,25 % safety factor,

Oil Duct 2 - 61,14 % safety factor.

Fig. 7. Voltage distribution.

Fig. 8. Electrical field distribution.

Fig. 9. Historical field distribution limits.

Fig. 10. Oil stress distribution and safety factors between HV winding 
and LV winding.

Thermal analysis was made separately according to mineral 
oil and ester liquid, the ambient temperature of 20°C and 40°C in 
order to see the effect of different ambient temperatures and differ-
ent liquids. In each case, the maximum temperature is on the 1st 
layer of the LV winding. In the worst case of ester, the maximum 
gradient is 29 K for LV winding and 26 K for HV winding. Aver-
age gradients were obtained as 19 K for LV winding and 15 K for 
HV winding in the ester case. Within the scope of the project, the 
hot spot was also examined. For the 70 MVA LV winding, the hot 
spot was clearly visible on the first layer. The 70 MVA HV wind-
ing was also located on the first layer, but the 2nd, 3rd, 4th and 5th 
were also close to hot spot temperatures. The LV winding hot-spot 
value is about 8 K higher than the HV winding hot-spot value. The 
70 MVA power transformer with ester CFD analysis results are 
shown in Table XIV. Table XV shows the mass flow distribution 
between the LV winding and HV winding.

Table XIV

 Cfd Results for 70 MVA Transformer

Average gradient (K)
LV HV

Ambient Temp °C 20 19,25 15,25
40 14,81 12,01

Table XV

Mass Flow Distribution Results for 70 MVA Transformer

LV HV
Mass flow (% kg/s) 36 64

Fig. 11. Hot spot locations.

The comparison of different liquids has also been carried out in 
scope of this project. Due to lower viscosity advantages of mineral 
oils, the hot spot and average temperature results were better in 
mineral oil case. Average temperature rise and hot-spot were high-
er by 3 K and 6 K respectively, due to the use of the ester liquid 
instead of mineral oil in the LV winding CFD simulation model. 
The region with the maximum temperature increase (worst-case) 
is seen on the 1st layer of the LV winding. The hot spot location is 
expected in 75 mm below from 1st layer of the LV winding and 110 
mm below from 2nd layer of the HV winding as shown in Fig. 11.

V. Conclusion
The work conducted on the development of advanced trans-

formers with alternative insulation systems required a thorough 
analysis on how these materials can be integrated in the design. 
Whether we consider small distribution transformers (below 10 
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MVA, below 66 kV) or larger power transformers, studies are 
required to allow for an optimized use of such materials. Studies 
show that integrating such material can provide significant benefits 
in terms high loading capabilities without loss of life for transform-
ers in PV solar installations or improve environmentally the large 
power transformers.
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Development of Fiber Reinforced Compound Bipolar 
Foils for Fuel Cells

Ali Osman Erdem, Paul Stannek, Marco Grundler, Alexander Nuhn, Stefan Schmidt, Sebastian Schmeer

Summary —  In the research project »InduRex«, the challenge was 
to produce graphite polymer bipolar plates with the thinnest possi-
ble thickness. The physical and chemical requirements were defined 
according to the values set by the »Department of Energy«. Within the 
scope of the project, the continuous production of highly filled foils, 
which were then successfully structured as bipolar foils and operated 
in a fuel cell, was successfully implemented. Initial cell tests demon-
strated a good cell efficiency at low and medium current densities. For 
this reason, the approach of creating bipolar plates from compound 
foils is still being pursued. Now the challenge is to produce bipolar 
films with a larger active area and to increase the mechanical stabi-
lity to such an extent that the construction of a multicell stack can be 
realized. As a result, a metallic bipolar plate design was successfully 
transferred to a compound foil as part of the »InduRex« project. The 
problem is that with a larger bipolar foil there is a risk of obtaining 
low mechanical stability. Therefore, carbon fibers are introduced into 
the films as part of the research project »Faserverstaerkte Folien« in 
order to improve the mechanical properties. In addition to continuo-
us production, the thin-walled foils are reinforced with carbon fibers 
using a hot press. The fiber-reinforced foils will be characterized in 
the next steps to investigate the influence of the carbon fibers. The 
aim is to obtain even thinner bipolar plates with consistent properties 
from the extruded foils in order to reduce the overall weight and vo-
lume of the fuel cell.

Keywords — bipolar foils, fuel cell, compound, electrically conduc-
tive, highly filled, extrusion

I. Introduction 

Within a fuel cell (FC) stack, bipolar plates (BPP) are 
the largest volume unit and thus decisively define the 
resulting size of the stack, the weight and at least 30% 

of the cost. [1,2]. A low wall thickness of the BPP is therefore de-
sirable, especially for mobile applications, so that metallic BPP 
are used almost exclusively for automotive FCs. However, me-
tallic BPPs have the disadvantage that their service life is shorter 
due to corrosion and they have to be coated in advance at high 

cost. Graphitic or compound-based BPPs, on the other hand, do 
not need to be coated and currently achieve a longer service life 
than metallic BPPs [3]. Strategic Analysis Inc. has done a costing 
exercise for fuel cell systems using metallic and graphitic BPP in 
[4]. This shows, among other things, that the costs with graphitic 
BPP result at ~ $3/kW and metallic BPP at ~ $6/kW for light duty 
vehicles at a produced unit rate of 500,000 systems/year. Thus, FC 
systems with graphitic BPP meet the Department of Energy (DoE) 
target for specific cost [5]. However, graphitic BPP are usually 
significantly thicker (~ 2.3 mm) than metallic BPP (~ 0.1 mm or 
~ 0.4 mm formed) due to the „classic“ manufacturing processes 
such as hot pressing or injection molding. Using the production 
process of foil extrusion presented here, highly filled compound-
based unstructured bipolar half-panels (BPHP) can be produced 
continuously in thicknesses as thin as 0.37 mm. The reduction of 
the thickness compared to injection or compression molded BPP 
leads to a significant reduction of the weight and volume of the 
final FC stack. Also, the reduction of the raw materials needed to 
produce a BPP saves costs and reduces the carbon footprint. With 
the addition of carbon fibers, even very thin foils can obtain the 
required mechanical stiffness.

II. Methodology
Thin-walled bipolar foils are produced at ZBT on a Brabender 

KE 30 single-screw extruder with a coupled sheet die and down-
stream calendaring unit from Saueressig (Fig. 1).

Fig. 1. Calendered bipolar foil and production line

For foil production with the production line shown in Fig. 1, 
compound material is first produced on a ring extruder (Extricom 
RE3). In this process, the matrix polymer (polypropylene) is fed 
into the extruder upstream via a dosing differential scale, melted 
and loaded downstream with various fillers, mainly graphite and 
conductive carbon black. The choice of fillers and the ratio of ma-
trix polymer to fillers is decisive for the physical properties of the 
compound materials and the subsequent bipolar foil. Due to the 
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increase in viscosity and the change in mechanical properties with 
an increase in filler content, the compound formulation has to be 
adapted to the foil production process.

The previously produced compound is transferred to the feed 
hopper of the single-screw extruder, melted and conveyed to the 
sheet die. There, the melt emerges with a width of 250 mm and, 
due to the variable cleft lip of the die, the thickness can be adjusted 
between 0.4 mm and 1.5 mm. The downstream calender specifies 
the final thickness of the bipolar foils via a variable roll gap. The 
unstructured bipolar foils produced in this way are subjected to 
numerous characterizations ex-situ (electrical resistance, hydrogen 
permeation and mechanical parameters). For mechanical char-
acterization tensile tests were performed. Dogbone specimens of 
0.4mm thickness were laser cut (speciment type 1B of DIN EN 
ISO 527-2) and tested in a Zwick 1485 testing machine. Strain mea-
surement was done optically via digital image correlation using the 
Software GomCorrelate.

Some foils are reinforced with carbon fibers by hot pressing 
in previous steps to increase mechanical stiffness. These are also 
characterized ex-situ and compared with the foils without fiber re-
inforcement to determine any influence of the carbon fibers. The 
following results relate to two different carbon fiber-reinforced 
semi-finished products used to reinforce foils:

• 15K carbon fiber roving TR 50S from Mitsubishi, with 
binder resin (EPIKOTE Resin TRAC 06720) with  
8 w% spread to 20 mm width.

• CFR-UD tape Tafnex CF-PP 66 w%, thickness: 0.16 mm

The mold used is a polished 50 mm sample mold consisting 
of a stamp and guide sleeve, see Fig. 2. The system technology 
for temperature control and pressure application is a variothermal 
laboratory press, see Fig. 3. The release agent Frekote 55-NC from 
Loctite and an additional fabric-reinforced PTFE release foil are 
used to separate the tools.

Fig. 2. Polished press body for 50 mm samples

Fig. 3. Laboratory press with pressing tool

The pressing process is divided into three phases: firstly the 
heating phase (Time: 0 to 5 minutes), secondly the pressing pha-
se with constant temperature and constant pressure (Time: 5 to 15 
minutes) and thirdly the cooling phase (Time: 15 to 25 minutes), 
see Fig. 4.

Fig. 4. Variothermal process control

During the first phase, the mold is heated via the heated press-
ing plates and the pressing force is applied. The mold cavity re-
acts to the temperature change with a time delay due to its own 
thermal resistance and adapts to the controlled temperature of the 
press plates. The tool starts at 40 °C and is heated to 220 °C within 
5 minutes. The pressing force is relieved twice during heating to 
prevent the press plunger from jamming in the tool.  

The closed cavity creates a pressure build-up of around  
7.6 N/mm² with a pressing force of 15 kN on the samples. This 
pressure is maintained in the second phase at a constant 220 °C for 
about 10 minutes.

In the cooling phase, the sample is cooled to 40 °C under 
constant working pressure, then relieved and demolded. It should 
be noted that due to the precise control of the press, the measured 
pressing force overlaps with the specified target force, so that only 
one line (yellow/orange) is visible in the diagram.

Micrographs:

The molded specimens for the micrographs are embedded in 
EpoFix Resin plus EpoFix Hardener from Struers. They are then 
ground on an ATM Saphir 360 grinding disc with water cooling 
and grit sizes from 180 to 4000. This is followed by polishing stag-
es with 3 and 1 ym on an ATM Saphir 320. The micrographs are 
taken with a Leica DM6000M reflected light microscope.

In order to also characterize the bipolar foils in-situ in a Baltic 
Fuel Cell test hardware, flow fields were transferred into the bipo-
lar foils using the embossing die shown in Fig. 5 and a laboratory 
press from Höfer. For this purpose, the bipolar foil is heated to the 
melt temperature of the polymer used and then an embossing force 
of 50 kN is applied to the flow field area of 25 cm².

After the cell made of compound bipolar foils had run succe-
ssfully, developments for a cell with a larger active area followed. 
Within the “InduRex” project, it was possible to transfer the design 
of a metallic bipolar plate to a compound bipolar foil. The decisive 
factor was to adapt the design in such a way that the cell could 
be sealed. During the hot press process, it was first necessary to 
adjust the parameters so that no cracks occurred and the structures 
were mapped evenly. Analogous to the 25cm² single cell design, 
the structures were incorporated into the compound foil by means 
of the hot press process. The following Fig. 5 shows the compound 
bipolar foil with an active area of 100 cm².
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Fig. 5. Compound foil BPP with an active area of 100 cm²

Initially, the construction and operation of a single cell is 
planned. With conventional metallic bipolar plates, cooling takes 
place between the bipolar half-plates. The cooling concept of me-
tallic bipolar plates is not directly transferable to the compound 
bipolar foils. The compound bipolar foils are structured on one side 
and embossed flat on the other. This eliminates the cooling func-
tion between the bipolar plates. For the single-cell design, cooling 
was therefore planned through the insulation plate. The cell is sea-
led with the help of gaskets that are inserted into the grooves in the 
insulation plate and the dispenser gaskets applied to the bipolar fo-
ils. The final assembly is done by threaded rods, which are fastened 
with nuts. The following Fig. 6 shows the individual components 
for the assembly of the cell.

Fig. 6. Components for the assembly of the single-cell unit with an active 
area of 100 cm²

There are also challenges with the single-cell compound bipo-
lar foils. An alternative solution for cooling will have to be found 
for a multi-cell setup. The presented setup only works as a single 
cell. It would be conceivable to weld or glue the bipolar foils to-
gether. Another alternative would be to emboss the compound foil 
on both sides to distribute the media on one side and to enable 
cooling on the other. In the following sections, the embossing of 
compound foils on both sides will be discussed again.

Another problem is the mechanical stability of the compound 
bipolar foils. The bipolar foils must be tensioned with a defined 
contact pressure to enable the best possible contact with the GDL. 
The mechanical strength of the bipolar foils should be sufficient to 
prevent them from breaking or cracking. This problem increases 
in the case of an assembly with several cells, because there is a 
potential risk of misalignment and homogeneous compression of 
the fuel cell stack is made more difficult. As already mentioned, 
the „Faserverstarrkte-Folien“ project is attempting to strengthen 
the mechanical strength of compound films with the help of carbon 
fibers. Therefore, a 25cm² single cell testwith fiber-reinforced foils 
is being carried out as part of the „Faserverstaerkte Folien“ project 
to test the effect of the fibers.

III. Results
Since the beginning of the research project, numerous bipolar 

foils have been produced from various material formulations and 
characterized with regard to their physical and chemical properties. 
Excerpts of the measurement results are presented below.

A. Electrical Resistance of unreinforced foils
The bipolar foils were measured with regard to the area-spe-

cific contact resistance relevant for FC applications. A specially 
constructed test stand was used to measure the resistances. As 
shown in Fig. 7 the sample is clamped between two gold-plated 
copper poles (A = 4 cm²) whose contact pressure can be controlled 
linearly by compressed air. A gas diffusion layer (GDL), whose 
contact force or pressure-dependent resistance curve is known, is 
previously applied to each of the measurement poles, whereby the 
measurement section is oriented very closely to the real resistance 
chain in a fuel cell [6].

Rtot RD

Resulting contact pressure

Gas diffusion layer

Specimen
(unstructured)

Measuring pole 
(gold-plated)

Fig. 7. BePPel resistance test rig (top) and measuring principle (bottom)

For the project “Faserverstaerkte Folien”, in order to reinfor-
ce compound foils with fibers, four different compound foils were 
produced as matrix material with different filler contents. Foils 
with 23% polymer content, 28% polymer content, 27% polymer 
content and 30% polymer content were produced. The selected raw 
materials of Mat.1 and Mat.2 differ from the rest of the foils, whe-
reas Mat.3 and Mat.4 were produced from the same raw materials. 
These were first measured for area resistivity to determine their 
suitability as bipolar plate material, as shown in Fig. 8 below. The 
compound foils were measured in the untreated, ground and then 
annealed state. It can be clearly seen that by optimizing the mate-
rial composition and filler content, the area-specific forward resi-
stivity was reduced from, for example, 45 mΩcm² with a polymer 
content of 23% down to 12 mΩcm². However, the aspect of further 
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post-processing or fiber incorporation has to be considered. The-
refore, the experiments of fiber insertion are tested with foils of 
Mat.4. The reason for this is that due to the lower filler content or 
higher polymer content, the flowability is higher and therefore the 
fiber incorporation is facilitated.

Fig. 8. Area-specific contact resistances of unstructured bipolar foils

B. Mechanical characterization
Stress strain curves of the unreinforced compound foils (Fig. 

9) show the strong embrittlement of the polypropylene by incor-
poration of graphite and carbon black. The values for fracture stra-
in, tensile strength and elastic modulus (measured between 0 and 
0.1% strain due to strong non-linearity after 0.1% strain) are 0.48 
± 0.05%, 38.6 ± 1.7 MPa and 11.1 ± 0.4 GPa respectively. Therefo-
re, the fillers reduce the polypropylen’s fractures strain drastically 
from about 700% to about 0.5%. Conversely, the elastic modulus 
is increased roughly tenfold. Ultimate tensile strength is increased 
by about 14%. 

Fig. 9. Stress strain curves of unreinforced compound foils + mean curve 
and scatter band (standard deviation).

C.Fiber application in the pressing process and 
micrograph analysis

As part of the project, C-fibers were incorporated in various 
orientations on and in the compound foils to improve mechani-
cal stability. These samples can be taken from the two following 
figures.

Fig. 10 shows samples 7 and 13 before impregnation. The UD 
tapes on the bipolar foil (left) and the spread C-fibers with impreg-
nating powder between the fibers are clearly visible. The powder is 
milled compound from G-R-PP75%

Fig. 10. Sample 7 and 13 before pressing

The compressed and demolded specimens are shown in Fig.  11 

Fig. 11. Fiber-reinforced samples P1, P5, P7, P10, P13 and K1, K2, K3. 
Diameter of the samples: 50 mm

The following table 1 contains a detailed description of the 
various samples and their configuration.

Table 1 

Produced Fiber Reinforced Compound Foils

It can be noted that only the conventional CF-PP tapes achieve 
good adhesion to the bipolar plate due to their surplus matrix. At 
the same time, an electrically insulating separating layer is formed, 
see Fig. 12.
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Fig. 12. Micrograph of sample 7 showing the bipolar film at the edges 
and the interface of the CF-PP tape in the center.

The reduction of this separating layer through the use of spread 
fiber layers plus milled compound, as in sample 13, shows the low-
est fiber-reinforced layer thickness of all samples. Minimum layer 
thicknesses in the order of up to 2-3 carbon fiber diameters were 
achieved here, see Fig. 13. Due to the lower proportion of binder 
resin compared to the conventional UD tape, the C-fibers are much 
closer together. This leads to poor strength between the fibers. 

It can also be seen that the PP matrix flows out of the bipolar 
plate and partially fills the free spaces between the fibers. However, 
this effect is not sufficient to achieve a good bond to the bipolar 
film and between the fibers. However, a relatively high electrical 
conductivity is achieved, taking into account 100% or full-surface 
fiber coverage.

Fig. 13. Micrograph of sample 13. The separating layer is approx. 2-3 
carbon fiber diameters thick. The bipolar film is located on the sides.

D. Electrical Resistance reinforced foils
In order to investigate the influence of the fibers on the elec-

trical conductivities, the area specific volume resistances of the 
samples from Fig. 11 were first measured.

Fig. 14. Area-specific contact resistances of unstructured fiber reinforced 
foils

In the measurement shown in Fig. 14, two foils were pressed 
into one sample as the reference sample or Sample 1. The remain-
ing samples are also two foils, but with fibers inserted between the 
foils.

Analogous to the foils without fiber reinforcement, the samples 
were each measured untreated and in the ground condition. Due 
to an uneven surface, the last three specimens could only be mea-
sured in the ground condition. Sample 5 could only be measured in 
the untreated state because fibers detached from the surface after 
grinding.

It can be seen in the Fig. 14 that the orientation and quantity 
of fibers significantly affects the area-specific forward resistivity. 
With the correct arrangement of the fibers and the optimal fiber 
size, it is possible to keep the resistances very low and in the same 
range as the reference sample, see sample K2 compared to the 
sample 1 in Fig. 14.

E. Hydrogen Permeation
The permeation measurements at ZBT are carried out in a 

cell-realistic manner by applying 100 % hydrogen to one side of a 
sample material. On the opposite side, the hydrogen concentration 
increase is measured after a defined time. The bipolar foil is positi-
oned as shown in Fig. 15 and flooded with a hydrogen pre-pressure 
of 1 bar. 

Fig. 15. H2 permeation test rig

To determine the suitability of the compound foils as bipolar 
plate material, a certain hydrogen impermeability must be achie-
ved. Analogous to the DoE specifications, ZBT determines limit 
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values for permeation coefficients in order to evaluate the imper-
meability. These limit values can be taken from the following table 
2. Therefore, the target is to obtain a permeation coefficient less 
than 10 E-8 cm²/s.

Table II

Limiting Values of Permeation Coefficients for Suitability 
as Bipolar Plate Material

Rating excellent very good good partially
acceptable

only sealing
material 

Perm. coeff.
[10E-8 cm²/s]

<0,1 <1 <10 <100 < 1000

The compound foils, which were manufactured for the fiber 
reinforcement, were tested for hydrogen tightness using the test rig 
shown in Fig. 15 and the results can be seen in Fig. 16.

Fig. 16. Permeation coefficients of unstructured bipolar foils 

As shown in the figure, all material compositions have a per-
meation coefficient lower than 10 E-8 cm²/s and even less than or 
equal to 1 E-8 cm²/s. Therefore, all compound foils are suitable as 
bipolar plate material in terms of hydrogen impermeability.

First fiber-reinforced samples were also tested for hydrogen 
tightness and are shown in the following Fig. 17.

Fig. 17. Permeation coefficients of unstructured fiber reinforced bipolar 
foils

Analogous to the previous measurement, all samples are in the 
limit ranges less than or equal to 1 E-8 cm²/s and therefore suitable 
as fuel cell material.

F. Embossing and Fiber Reinforcemend
Within the project “Faserverstaerkte-Folien”, the double-sided 

embossing of compound foils was first investigated. The foils were 
inserted between two structured stamps, each consisting of a po-
sitive and negative half, and hot pressed with suitable parameters. 
This made it possible to obtain a structured film with a homoge-
neous residual wall thickness. Within the project „Faserverstaer-
kte-Folien“, the Leibniz Institute for Composite Materials GmbH 
was able to demonstrate that it is possible to emboss compound 
films on both sides and this is shown in the following Fig. 18.

Fig. 18. Both side structured compound foil 

To increase the mechanical strength of the compound foil, car-
bon fibers will be added to the structured foil due the hot press 
process. In the first steps the challenge is to obtain the right para-
meters to add the carbon fibers in the compound material without 
damaging the foil. Afterwards the challenge is to choose the right 
fibers with the optimal distribution without the deterioration of the 
function as a bipolar plate. In the following Fig. 19 a structured 
compound bipolar foil with added carbon fibers is shown. 

Fig. 19. Both side structured compound foil with carbon fibers

Using carbon fiber reinforcement, it is possible to assemble a 
fuel cell stack with several cells. However, the main aspect of fiber 
reinforcement is that it allows thinner foils to be used to reduce the 
overall weight and volume of the fuel cell stack.  

IV. Discussion
With the production process developed at ZBT, it is possible to 

continuously produce highly filled compound foils with thickne-
sses between 0.4 mm and 1.5 mm that are suitable for FC applicati-
ons. The measurement methods and test rigs used had to be adap-
ted to the significantly thinner bipolar foils. The test procedures 
were successfully modified so that the bipolar foils can be repro-
ducibly characterized both ex-situ and in-situ. The investigations 
carried out show that the area-specific forward resistances of the 
most electrically conductive bipolar foils to date are lower than 20 
mΩ in the unstructured state. The H2 permeation coefficients are 
higher compared to metallic and the much thicker injection-mol-
ded or hot-pressed compound-based BPHP, but can be evaluated as 
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very gas-tight to hydrogen after adjusting the embossing parame-
ters. The drastically low fracture strain of <0.5% demonstrates the 
need for fiber reinforcement to enable mechanical stability. Howe-
ver, for a comprehensive characterization mechanical tests also 
need to be performed at the operating temperature of a fuel cell of  
80 °C. Strain is expected to increase for higher temperatures but 
strength and stiffness will drop significantly. Furthermore, the 
mechanical influence of the fiber reinforcement needs to be appro-
priately evaluated. Both evaluations will be performed in the course 
of this project. The fiber reinforcement applied by the IVW appears 
to implement the desired properties such as electrical resistance or 
hydrogen permeability and high strength in a favorable trade-off. 
In addition, locally applied conventional CF-PP tape was shown to 
be a good way of increasing strength with moderately increasing 
electrical resistances.
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Simulated Thermal Fault: Assessing Dissolved Gas 
Analysis through Tube Heating Method on Mineral Oils 

and Natural Ester
Pär Wedin, Elena Minchak, Carl Wolmarans, Robert Fairholm, Jessica Singh, Kaveh Feyzabi, Thomas Norrby

Summary —  Dissolved gas analysis (DGA) is the most widely used 
technique for monitoring transformer condition and detecting faults 
at an early stage. The quantity and type of gases that are produced by 
transformer faults and dissolved in the insulating liquid can reveal a 
lot about the nature and severity of the fault. To explore the variations 
in the dissolved gases based on the severity of the fault and the type of 
insulating liquid, we employed the Tube Heating Technique to simula-
te thermal faults at regulated temperatures up to 800 °C. To illustrate 
these differences, DGA data from commercially used insulating fluids 
such as inhibited and uninhibited mineral oils and a natural ester, will 
be presented.

Keywords — transformer, dissolved gas analysis, DGA, thermal 
fault, mineral oil, natural ester

I. Introduction

The universally accepted technique for monitoring the con-
dition of transformers to detect faults at an early stage is 
dissolved gas analysis (DGA) [1]. Faults in the transformer 

often generate gases that are dissolved in the insulating liquid. The 
quantity and type of gases provide significant information about 
the nature and severity of the fault.

Analysis of the gases in insulating oils using the gas chromato-
graphy method offers the highest accuracy and repeatability com-
pared to hydrogen online monitoring and photoacoustic spectros-
copy [2]. Oil samples need to be collected from operational tran-
sformers, and after undergoing several procedures, the extracted 
gases are analysed in the laboratory through gas chromatography. 
Compared to laboratory analysis, online DGA in power transfor-
mers is an even greater tool for predictive maintenance and ensu-
ring the reliable operation of these critical assets [3]. By regularly 
analysing the dissolved gases in real-time or near real-time, abnor-
malities can be detected early, allowing for proactive maintenance 
and preventing potential catastrophic failures [4]. This technology 
enables timely intervention, helps in planning maintenance sche-
dules, minimizes downtime, and ultimately extends the operational 
life of the transformer. Moreover, it assists in making informed de-

cisions about whether specific transformers need immediate atten-
tion or can continue in operation, optimizing resource allocation 
and enhancing overall grid reliability.

To enhance research on interpreting dissolved gases, particu-
larly for testing the next generation of insulating fluids, the establis-
hment of a small-scale laboratory setup to replicate thermal faults 
(hotspots) is desirable. One such setup involving a heating wire 
has been proposed to emulate thermal faults under small-scale la-
boratory conditions, within a temperature range of up to 550°C [5]. 
Another publication suggested utilising resistance heating as the 
heat source; however, this method only reached temperatures of up 
to 320°C [6]. Notably, achieving a stable thermal fault simulation 
at temperatures exceeding 400°C on a small scale has proven to be 
challenging. Nevertheless, the tube heating method emerged as a 
promising alternative for replicating conditions resembling ther-
mal faults at temperatures of up to 750°C [7, 8]. While this method 
appears to be reliable for simulating stable faults, it is imperative 
to verify the extent to which results obtained through this approach 
can accurately correlate with findings from operational transfor-
mers. This verification process is crucial for advancing diagnostic 
knowledge.

This study presents the development of a testing system de-
signed to examine thermal faults using the tube heating method. 
An inhibited mineral oil, an uninhibited mineral oil, and a natural 
ester were exposed to thermal faults up to 800°C, and the resulting 
gases were analysed using dissolved gas analysis. The outcomes 
are subsequently presented and juxtaposed with the essential gas 
ratios employed in IEC 60599 [9] for forecasting fault types in 
transformers.

II. MATERIALS AND METHODS

A. Investigated liquids
Three different insulating liquids were subjected to testing 

using the experimental rig. These liquids include an inhibited mi-
neral oil (inhibited MO, NYNAS NYTRO 10XN), an uninhibited 
mineral oil (uninhibited MO, NYNAS NYTRO Libra), and a natu-
ral ester (NYNAS NYTRO 100 NE). Table 1 provides an overview 
of the principal physical properties of the analysed insulating liqu-
ids. The boiling point distribution for the mineral oils is illustrated 
in Figure 1. Prior to testing, the insulating liquids were filtered and 
de-gassed using vacuum-filtration with 1.2 µm filters.
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Table 1

Overview of the Physical Properties of the Examined 
Insulating Liquids.

Method Uninhibited 
MO

Inhibited 
MO

Natural 
ester

Density at 20°C (kg/m3) ASTM D4052 879.0 874.3 914.6

Viscosity at 40°C 
(mm²/s) ASTM D445 9.295 7.638 40.59

Flash point, PM (°C) ASTM D93A 153 142 275

Water content (ppm) IEC 60814 4.4 3.1 41

Acidity (mg KOH/g) IEC 62021-3 0.007 0.006 0.089

DDF at 90°C IEC 60247 0.0004 0.0001 0.0096

IFT (mN/m) ASTM D971 45.1 49.2 27.2

Color ASTM D1500 <0.5 <0.5 <0.5

Inhibitor (%) IEC 60666 n/a 0.28 n/a

Fig. 1. Boiling Point Distributions for the two mineral oils according 
to ASTM D2887. Boiling point distribution data for the natural ester is 
unavailable.

DGA samples were collected via a dedicated sampling port 
in accordance with IEC 60475 [10]. Subsequently, the samples 
were sent to Bureau Veritas Commodities Antwerp NV, located 
in Antwerp, Belgium, for dissolved gas analysis following IEC 
60567 [11].

B. The experimental setup
The assembled setup is modelled after a configuration presen-

ted by Wang et al. at Manchester University [7], and is described 
elsewhere [12]. Broadly, it comprises a 12-litre stainless-steel oil 
tank connected by a pipe that passes through a furnace, and then 
returns to the tank, forming a closed loop (Figure 2).

The heating section incorporates a pipe furnace featuring a 15 
cm heated zone, capable of achieving a maximum operating tem-
perature of 1200°C. The pipe that passes through the furnace is en-
veloped in a copper mantle to enhance heat dispersion and transfer 
efficiency. A hole in the mantle facilitates insertion of a thermoco-
uple for measuring the outer surface temperature of the steel pipe. 
Additionally, another thermocouple measures the interior tempera-
ture of the pipe at the same position.

Fig. 2. Overview of the setup, including the tank, the pipe furnace, and 
the two water coolers before and after the furnace. The sampling port can 
be seen beneath the manometer attached to the pipe just before the inlet 
cooler of the furnace. An NI CompactDAQ chassis with a module for 
connecting eight thermocouples is visible in the lower left of the figure.

Throughout the experiment, temperature data is continuously 
collected from the thermocouples using a LabVIEW interface. 
Furthermore, temperature readings, target set points, and power le-
vels from the furnace are continually logged. Pressures within the 
tank and the pipe are monitored through visual observation.

C. Experimental procedure
The analysis of dissolved gases in the three insulating liquids 

was conducted at three hotspot temperatures: 275°C, 550°C, and 
800°C. These temperatures align with the T1, T2, and T3 thermal 
fault classifications as stipulated in IEC 60599. The duration of 
treatment was 168 hours, 6 hours, and 3 hours for the respective 
treatment temperatures of 275°C, 550°C, and 800°C.

When investigating a new liquid, it’s necessary to replace the 
pipe that runs through the furnace with a fresh, unused pipe. The 
system is then pressurized to 1 bar above normal pressure for 24 
hours to ensure proper sealing. Additionally, a level is employed to 
confirm that the pipe loop passing through the furnace maintains a 
horizontal orientation.

One 4L aluminium bottle is emptied into the clean tank, resul-
ting in an 8L headspace within the tank. Upon activating the pump, 
the pressure is lowered to 0.2 bar. Subsequently, nitrogen gas is 
introduced to reach 1.0 bar. This pressure cycling is repeated for 
five cycles, achieving an oxygen content in the gas phase of less 
than 70 ppm. After this process, a blank DGA sample is collected 
from the sampling port while the pump operates at a low speed.

For the heat treatment, the pump is switched off, and the 
furnace’s set point is adjusted to a suitable temperature, TSP, that 
ensures the correct pipe temperature. Once the heat treatment 
concludes, the furnace is powered down and allowed to cool. To 
maintain consistency, the treatment duration is measured from 
when the furnace set point is set to T=TSP until it is set to T=0°C. 
As the furnace’s external pipe temperature reaches around 350°C, 
the pump is turned on at a low flow rate to expedite cooling. When 
the external pipe temperature dips below 100°C, a DGA sample is 
obtained. By this stage, the tank’s temperature has risen to 30-35°C.
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III. Results and Discussion
The temperature profile during a six-hour heat treatment of the 

inhibited MO is displayed in Figure 3. From the moment the fur-
nace initiates heating, it takes just under an hour for the outer pipe 
temperature to reach the intended hotspot temperature. The outer 
pipe temperature remains stable from that point until the heating is 
terminated. However, the measurements clearly show that the tem-
perature inside the pipe is notably lower and displays significant 
fluctuations. Temperature fluctuations are also evident at the furna-
ce outlet and, to a lesser extent, at the furnace inlet. The deactivated 
pump effectively prevents backflow, allowing liquid to flow only to 
and from the tank via the furnace outlet. This explains the differen-
ces in temperature fluctuations between the furnace inlet and outlet.

Fig. 3. Temperature profile of Inhibited MO run. Hotspot temperature 
corresponds to the outer pipe surface, and measurements are taken at the 
same location inside the pipe.

These temperature fluctuations stem from the evaporation of 
the MO within the furnace, causing hot gas to flow past the ther-
mocouple at the outlet. As the hot gas reaches the cooler, it conden-
ses, resulting in a pressure drop that compels cool oil to flow back 
past the thermocouple toward the furnace, as illustrated in Figure 4. 
This pressure drop is readily visible on the pipe’s manometer and is 
often accompanied by an audible cracking sound emanating from 
the pipes. The temperature within the central section of the pipe, 
located inside the furnace, hovers around 325°C, corresponding to 
the midpoint of the boiling point distribution in Figure 1. Following 
the heat treatment, no discernible pressure buildup was observed 
within the tank. The temperature profile for the uninhibited MO 
exhibits analogous characteristics to that of the inhibited MO, 
differing primarily in the higher internal pipe temperature attribu-
ted to the elevated boiling point distribution.

Fig. 4. Temperature fluctuations inside the pipe and at the furnace outlet 
for Inhibited MO.

The temperature profile for the natural ester significantly differs 
from that of the mineral oils, as depicted in Figure 5. Initially, the 
temperatures of the pipe’s exterior, interior, and the furnace inlet 
and outlet steadily rise. However, around the 40-minute mark, the 
inner pipe temperature rapidly converges with the external tempe-
rature, and they remain virtually identical for the remainder of 
the heat treatment. Concurrently, the inlet and outlet tempera-
tures decline

rapidly, approaching 44°C towards the conclusion of the heat 
treatment. During this period, the pressure within the tank also 
shows a notable increase of 0.2 bar, while maintaining an ambi-
ent temperature. With an 8L headspace, this pressure increment 
corresponds to a gas volume generated of 1.6L, significantly excee-
ding the volume within the pipes. This outcome likely signifies 
that, after approximately 40 minutes when the internal temperature 
reaches 340°C, the natural ester starts to decompose. The resulting 
gas evolution pushes the oil from the pipe into the tank.

Fig. 5. Temperature profile during a typical run of the natural ester. The 
temperature profile suggests that the gas evolution during the thermal 
degradation of the oil has filled the pipe through the furnace with gas.

Some of the bulk properties of the oils were reanalysed 
following the 550°C heat treatment, and the results are presented 
in Table 2. The analysis of the key oil properties after the heat tre-
atment reaffirmed the stability of mineral oil properties. Remarka-
bly low DDF levels in the mineral oil samples indicate that even the 
uninhibited oil sample remained stable after the thermal treatment, 
preserving the oil’s purity. Additionally, the low DDF levels provide 
confirmation that no contamination occurred during oil handling.

In contrast, the DDF level of the ester sample displayed a si-
gnificant increase after exposure to the 550°C temperature, nearly 
four times higher than its initial value. This points to an elevated 
presence of polar contaminants, a consequence of fluid degradati-
on. Furthermore, the deterioration of the ester oil is evident through 
a substantial increase in acidity attributed to the elevated quantity 
of fatty acids. The deterioration is further validated by a change in 
colour as per ASTM D1500.

Table II

Key Physical Properties of The Examined Insulating 
Liquids after Heat Treatment.

Method Uninhibited MO Inhibited MO Natural ester

Acidity (mg KOH/g) IEC 62021-3 0.007 0.009 0.362

DDF at 90°C IEC 60247 0.0002 0.0001 0.0399

IFT (mN/m) ASTM D971 42.2 48.3 26.7

Color ASTM D1500 <0.5 <0.5 0.8

Inhibitor (%) IEC 60666 n/a 0.28 n/a
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Table III

The Results from the Dissolved Gas Analysis for the Insulating Liquids.  
The treatment durations at different temperatures were 168 hours at 275°C, 6 hours at 550°C, and 3 hours at 800°C.  

The DGA analysis of the blank samples shows insignificant quantities of the gases of interest.

Uninhibited MO Inhibited MO Natural Ester

w275°C 550°C 800°C 275°C 550°C 800°C 275°C 550°C 800°C

Hydrogen <5 268 5788 <5 183 2374 <5 189 1973

Methane 1.4 1529 18961 2.7 1100 19175 2.2 1409 5481

Ethane 3.3 1722 15452 2.4 1432 16402 <1 7132 11349

Ethylene 2.3 1691 28333 1.2 1533 32774 1.5 11519 29285

Acetylene <1 <1 54 <1 <1 65 <1 12 91

Carbon monoxide <25 <25 <25 <25 <25 <25 95 1316 1741

Carbon dioxide <25 68 96 39 108 73 434 5519 8956

Nitrogen 72238 25157 41045 75419 31226 40051 68769 26542 42471

Oxygen 2652 7399 8155 4428 8777 6923 29150 3869 2128

Total dissolved gasses 74914 37846 117892 79886 44379 117854 98451 57512 103473

Total combustible gasses 9.9 5222 68597 11.1 4269 70808 98.7 21584 49918

As presented in Table 3, the uninhibited MO exhibits higher con-
centrations of detectable key gases when compared to its inhibited 
counterpart at 550°C. However, the natural ester sample contains no-
tably larger quantities of ethane, ethylene, carbon monoxide, and car-
bon dioxide. The increased presence of carbon monoxide and carbon 
dioxide can likely be attributed to the molecular structure of esters, 
signifying pyrolysis or molecular decomposition due to the elevated 
temperature. The amount of gas produced is at 800°C is significantly 
greater, but the trend is less clear. The uninhibited MO produces more 
hydrogen but less ethylene than its inhibited counterpart. The ester 
produces less methane and ethane than the mineral oils but still signi-
ficantly more carbon monoxide and carbon dioxide.

IEC 60599 [9] recommends specific key gas ratios for determi-
ning the probable type of fault in a transformer through dissolved 
gas analysis, as detailed in Table 4. The calculated key gas ratios 
for the examined oils are presented in Table

5. In the case of a T1 thermal fault, the acetylene-to-ethylene 
ratio and the methane-to-hydrogen ratio is non-significant, regar-
dless of their values. However, the ethylene-to-ethane ratio should 
remain below one. While this criterion remains applicable for both 
mineral oils, it is surpassed by the natural ester. Nevertheless, it’s 
worth noting that the calculated key gas ratios offer limited rele-
vance due to the extremely low concentrations of dissolved gases 
in all three insulating liquids.

Table IV

The DGA Interpretation Table for Thermal Faults From 
IEC 60599 [9].

Case Characteristic fault C2H2/C2H4 CH4/H2 C2H4/C2H6

T1 Thermal fault t < 300 °C NS 1 > 1 but NS 1 < 1

T2 Thermal fault 300 °C < t < 700 °C < 0.1 > 1 1 to 4

T3 Thermal fault t > 700 °C < 0.2 > 1 > 4

1 NS = Non-significant whatever the value.

Table V

Key Gas Ratios from DGA Of Insulating Liquids at Three 
Different Treatment Temperatures, According to IEC 

60599.

C2H2/C2H4 CH4/H2 C2H4/C2H6

275°C 550°C 800°C 275°C 550°C 800°C 275°C 550°C 800°C

Uninhibited 
MO

0.4 0.0 0.0 0.3 5.7 3.3 0.7 1.0 1.8

Inhibited 
MO

0.8 0.0 0.0 0.5 6.0 8.1 0.5 1.1 2.0

Natural 
Ester

0.7 0.0 0.0 0.4 7.5 2.8 1.5 1.6 2.6

At a hotspot temperature of 550°C, all three liquids exhibit ne-
gligible acetylene content. The methane-to-hydrogen ratio exceeds 
one, while the ethylene-to-ethane ratio falls within the range of 1.0 
to 1.6. As per the guidelines outlined in IEC 60599, presented in 
Table 4, it is suggested that the three liquids have undergone a T2 
fault condition. This observation aligns well with the pipe tempe-
rature of 550°C.

At an 800°C hotspot temperature, all three insulating liqu-
ids demonstrate a significant increase in gas generation. By the 
conclusion of the heat treatment, there was a noticeable rise in tank 
pressure—approximately 0.3 bar for the mineral oils and 0.7 bar 
for the natural ester. Consequently, the DGA samples exhibited a 
substantial presence of dissolved gases, as illustrated in Table 3. 
Post-heat treatment, a notable amount of carbonized oil residue 
remained within the pipe for all three liquids. This aligns with the 
description of a T3 fault in accordance with IEC 60599.

While acetylene content remains insignificant and the metha-
ne-to-hydrogen ratio exceeds one, the ethylene-to-ethane ratio falls 
below the expected value for a T3 thermal fault. As shown in Table 
4, a T3 thermal fault should exhibit an ethylene-to-ethane ratio gre-
ater than four. However, the experimental results range from 1.8 to 
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2.6. Xing et al. [8] investigated simulated thermal faults on natural 
esters using a similar tube heating method, and also reported lower 
than expected key gas ratios. One plausible explanation for this 
discrepancy could be the composition of the pipe passing through 
the furnace, which is constructed from stainless steel, as opposed 
to the copper typically found in transformers. Another possible 
contributing factor to the discrepancy could be the relatively large 
head space in the tank. The lower solubility of ethylene compared 
to ethene in the liquid phase could also result in an artificially low 
ethylene-to-ethane ratio [3, 13].

IV. Conclusions
This study introduces a setup built upon the Tube Heating 

Method, designed to replicate thermal faults at very high tempe-
ratures. Samples can be conveniently obtained through a standard 
sampling port and sent for analysis. Moreover, due to the setup’s 
use of readily accessible components, it can be easily adapted for 
integration with online DGA equipment.

The gas generation resulting from the investigating of an inhi-
bited mineral oil, an uninhibited mineral oil, and a natural ester was 
carried out using the tube heating method, reaching temperatures 
of up to 800°C to simulate a hotspot. Both mineral oils produced 
similar quantities of gas. In contrast, the natural ester generated 
significantly higher amounts of carbon monoxide and carbon 
dioxide compared to the mineral oils.

When assessing the ratios of key gases, as recommended by 
IEC 60599, at 275°C, the generated gas levels were too low to 
reliably determine the likely fault type. At 550°C, all three liqu-
ids exhibited ratios indicative of a T2 thermal fault. However, at 
800°C, the ethylene-to-ethane ratio was lower than expected for 
a T3 thermal fault. This difference could potentially be attributed 
to the use of stainless steel for the pipe material, as opposed to the 
copper commonly used in transformers, or to the comparatively 
large headspace.
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