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SUMMARY
The trend toward increasing integration of wind farms into the power system is a challenge for transmission and distribution system operators and 
electricity market operators. The variability of electricity generation from wind farms increases the requirements for flexibility needed for the reliable 
and stable operation of the power system. Operating a power system with a high share of renewables requires advanced generation and consumpti-
on forecasting methods to ensure the reliable and economical operation of the system. Installed wind power capacities require advanced techniques 
to monitor and control such data-rich power systems. The rapid development of advanced artificial neural networks and data processing capabilities 
offers numerous potential applications. The effectiveness of advanced deep recurrent neural networks with long-term memory is constantly being 
demonstrated for learning complex temporal sequence-to-sequence dependencies. This paper presents the application of deep learning methods to 
wind power production forecasting. The models are trained using historical wind farm generation measurements and NWP weather forecasts for the 
areas of Croatian wind farms. Furthermore, a comparison of the accuracy of the proposed models with currently used forecasting tools is presented.
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INTRODUCTION
Energy generation from renewable energy sources (RES), of which a high 
proportion is wind farm (WF) generation, will have an increasingly important 
impact in achieving low-carbon development of the electric power system 
(EPS). Although the integration of wind farms brings many benefits from an 
environmental point of view, the unpredictable and variable nature of WF 
generation poses many challenges for EPS operators (ensuring adequate 
ancillary services, economic dispatching of power plants, dynamic stability 
of the system), electricity market operators, and electricity producers and 
traders. One of the possible solutions to the above challenges is the deve-
lopment of advanced tools and methods for reliable short-term forecasting 
of wind farm generation [1,2]. Wind power forecasting is becoming incre-
asingly important in grid planning, optimization, and control as more and 
more energy is generated from inherently intermittent renewable sources. 
For practical purposes, the forecast time horizon can be divided into short-
term (up to 12 hours ahead) and long-term (up to 72 hours ahead) forecasts 
[3,4]. Short-term forecasts can be used to regulate the system and operate 
the intraday electricity market, while long-term forecasts are often used 
to plan power plant dispatch and the day-ahead electricity market [5]. In 
recent decades, the amount of available information and computer power 
have grown very rapidly, so forecasting methods have evolved from simple 
statistical and physical models to much more complex statistical models, 

including the concepts of machine learning and, more recently, deep lear-
ning [6]. The aforementioned methods of Big Data analysis deal with huge 
amounts of complex data that are not suitable for processing with con-
ventional algorithms. Methods based on a special type of recurrent neural 
network (RNN) with long short-term memory (LSTM) have proven highly 
successful in modeling long-term dependencies of meteorological varia-
bles and energy generation [7,8,9]. This is because LSTM-based networks 
are designed to learn dependencies among sequences of data. Weather 
forecast (Numerical weather prediction-NWP), as the most important input 
for wind power forecasting, provides time-labeled sequences of forecast 
data suitable for training recurrent networks. However, the accuracy of the 
LSTM method depends significantly on the network configuration and pre-
training parameterization, which is specific to each type of application.

Fig. 1 shows the classification of commonly used approaches and met-
hods for wind power predictions. Therefore, the methods used in this pa-
per can be classified as data-driven deep-learning methods for short-term 
point-forecast of a wind power plant production. In addition to the deter-
ministic approach, research is also being conducted on the probabilistic 
quantification of prognostic results, which aims to reduce the uncertainty 
of the forecast using confidence intervals [10].
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Figure 1: Wind power forecasting approaches [5]

RECURRENT NEURAL NETWORKS
The main feature of conventional neural networks, such as densely in-
terconnected networks and convolutional networks, is that they have no 
internal memory. Each input is processed independently without deter-
mining or comparing conditions between inputs. To process a sequence 
or time series with these networks, it is necessary to represent the entire 
sequence at once: turn it into a single data point as the network input 
[11]. Such a neural network is called a feedforward neural network and is 
often used in load forecasting [12][13]. Unlike traditional neural networks 
(NN), recurrent neural networks process series (sequences) by iteratively 
traversing the elements of a sequence and retaining the states that contain 
information about the previous data. RNN is a type of neural network with 
an inner loop and memory. The internal state of the RNN is reset between 
the processing of two different independent sequences, so a sequence is 
still considered a data point: one input to the network. What changes is 
that the data point is no longer processed in one step; the iterates inter-
nally over the sequence elements. Simple (basic) recurrent networks face 
the problem of a vanishing gradient when training long sequences using 
deep networks (networks with multiple layers), which makes them prac-
tically useless. The solution to the above problem was proposed in 1997 
(Hochreiter and Schmidhuber) in the form of networks with long-lasting 
short-term memory, but their practical application has been realised only 
in the last decade. Processing data in the LSTM layer is shown in Fig. 2 
LSTM enables the data (hidden state of cell ht) at any moment t of the 
input sequence (xt) to be transferred into long-term memory (Ct) at a later 
moment in time and deleted from it, if necessary. Stated functions are rea-
lized with the help of special gate functions (ft, it, ot). In short, LSTM-based 
models learn relevant dependencies across the input sequence, avoiding 
the vanishing gradient problem during training.

Figure 2: Data flow in LSTM cell in one step

2.1 Forecasting time sequences of wind farm 
generation
Sequence forecasting is different from other types of supervised machine 
learning in that it requires to maintain the temporal order of sequen-
ce values during model training and testing. Apart from numerical time 
sequences, sentences in text translation represent another type of 
commonly used sequential data for supervised machine learning. In the 
present case of wind power forecasting, time series of Croatian WFs 
power generation are converted into time sequences by segmenting 
continuous two-year time series into partially overlapping sequences.1 

For this reason, the paper deals with the time sequences of WF power 
output.

In general, forecasting problems with sequential data can be divided into 
four groups:

1. forecasting of the following value of the sequence;
2. sequence classification (forecast of the class according to the input 

sequence);
3. sequence generation (e.g., by generating text);
4. sequence-to-sequence prediction.

According to the form of available input data that can be used to forecast 
wind farm generation (sequential forecasts of atmospheric conditions from 
meteorological models) and obtaining historical power generation data 
from the SCADA system, a sequence-to-sequence problem can be for-
med: mapping sequences of (historical) weather forecasts (mostly wind 
speed and direction) to (historical) wind farm power generation sequences 
[14]. Fig. 3 shows the process of data preparation for training, validation, 
and testing of the models used in this work.

Input data, i.e., time series of historical measurements of realized produc-
tion and historical NWP forecasts are ‘cut’ into 72-hour long sequences2, 
aligned by timestamp, and merged in the form of 3D arrays (tensors) with 
dimensions: (sequence samples, horizon (72h), predictors). Mathemati-
cally speaking, the model of deep learning in this case is a composition 
of a matrix (tensor functions), which form is defined in advance using the 
so-called model layers. During the training process, the matrix weights of 
the predefined structure of the model are adjusted, to achieve an optimal 
mapping model from input predictors to output WPP production.

During the training and validation process, the available predictors (in this 
case wind speed and direction) are mapped to the actual power output of 

1 The power generation sequences should be aligned according to time steps with overlapping 
weather forecasts, which in the observed case are generated every 6 hours for the following 72 
hours, which means that there are several forecasts for the same moment.

2 In this paper, the sequence is considered as a 72-h long part of the time series of the realized 
power measurement or NWP forecast.
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2 The power generation sequences should be aligned according to time steps with overlapping weather 
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the WFs under consideration. The difference between training and validati-
on is that validation is used only to monitor the accuracy of the model du-
ring the training process. After the model has been trained, new predictors 
data is inserted into the model for the testing process for which training has 
not yet been performed, so that the model produces a forecast based on a 
“learned” relationship between the weather forecasts and the correspon-
ding power output of the wind farm.

Figure 3: Modeling sequential forecasting model

2.2 Deep learning model for sequential data
The basic structural unit in a deep neural network is a layer. The layer is a 
module for data processing, which takes one or more tensors (data arrays) 
as input and returns one or more tensors as output. Some layers have 
no internal states (dense layers), but RNN-based models have layers with 
internal states and multiple weight matrices that contain the network’s 
‘intelligence’. Sequential data is usually formed as 3D tensors with the 
following dimensions: (samples, time steps/horizon, predictors/feature) 
processed by recurrent layers such as LSTM and GRU (Gated Recurrent 
Unit). A deep learning model is built by “assembling” compatible layers in 
an appropriate configuration depending on the nature of the problem and 
the form of the input data. The layers of the model are usually arranged 
sequentially, meaning that the output of one layer represents the input to 
the next layer, but other topologies are also possible. In addition to the 
choice of network architecture, it is necessary to choose a loss function 
that is minimized during training and represents the accuracy measure 
between actual values and predictions. The value of a loss function, i.e., 
the error, is propagated through back-connections in layer weigh matrices 
(backpropagation through time) by using an optimization algorithm (e.g., 
Adam) based on stochastic gradient descent. For network training, the 
Adam optimizer was used because it is considered a very effective and 
fast training algorithm for deep neural networks. The learning is usually 
completed when the gradient values of all weight parameters are equal or 
close to zero. The process of model training is shown in Fig. 4. The choice 
of the appropriate loss function depends on the nature of the problem 
(regression, classification), and mean square error is most commonly used 
for the aforementioned type of sequential numerical data. Training a deep 
learning model requires considerable computational resources, which de-
termine both the possible ‘depth’ of a model and the speed of training, 
which is usually performed by advanced graphics processing units [17].

Figure 4: Process of training deep learning model

3. APPLICATION OF DEEP LEARNING 
TO FORECASTING WF GENERATION
Before the actual Deep Learning model is created, the input data must 
be prepared, which is usually not in a format suitable for model training. 
Preparation requires data clearing (e.g., removing unreal values, filling vo-
ids, etc.), data timestep alignment (e.g., reducing it to hourly values), and 
forming appropriate data tensors. In the following section, the process of 
model training and testing on real two-year data of a wind farm in Croatia 
is presented.

3.1 Wind farm data
Fig. 5 presents the two-year power generation data (from January 2018 to 
January 2020) of the considered WF in terms of measured wind speed and 
direction, i.e., the real wind power dependence curve of the considered 
WF. The wind rose (wind distribution by directional frequency) is shown 
in Fig. 6 with average wind speeds on the radial axis (e.g., in the interval 
from northwest to west wind (135°- 180°) the average wind speed is 7.72 
m/s). Moreover, the average wind speed is proportional to the frequency 
of the wind direction, the predominant winds being bora and mistral. Fig. 
7 shows the distribution of wind speed at the site with the marking of the 
average wind speed of 6 m/s (red line). Finally, Fig. 8 shows the correlation 
matrix of the measurement parameters in the SCADA system (wind speed 
and direction, operating power, temperature, and pressure).

It can be observed that wind speed has the highest correlation with power 
production (more than 0.8), while other meteorological parameters such as 
air direction, temperature, and pressure have a significantly lower corre-
lation with power. The explanation for the low correlation between wind 
direction and production can be found in the problem of hourly averaging 
of wind direction (e.g., a wind whose direction oscillates between 0 and 
360 degrees can lead to a mean value that suggests the opposite direc-
tion) and the possibility of modern WTG to rotate turbine nacelles in the 
optimal wind direction.

It is expected that wind speed has a positive correlation with the perfor-
mance of WF power higher than 0.9, while wind direction, pressure, and 
temperature have a slightly negative correlation with the performance of 
the wind farm’s power.

Figure 5: WF generation vs. wind speed and direction
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3 In this paper, the sequence is considered as a 72-h long part of the time series of the realized power 
measurement or NWP forecast. 

 

Figure 4: Process of training deep learning model 

 

Before the actual Deep Learning model is created, the input data must be prepared, 
which is usually not in a format suitable for model training. Preparation requires data 
clearing (e.g., removing unreal values, filling voids, etc.), data timestep alignment 
(e.g., reducing it to hourly values), and forming appropriate data tensors. In the 
following section, the process of model training and testing on real two-year data of a 
wind farm in Croatia is presented. 
 

 
Figure 5: presents the two-year power generation data (from January 2018 to 
January 2020) of the considered WF in terms of measured wind speed and direction, 
i.e., the real wind power dependence curve of the considered WF. The wind rose 
(wind distribution by directional frequency) is shown in Figure 6: with average wind 
speeds on the radial axis (e.g., in the interval from northwest to west wind (135°- 
180°) the average wind speed is 7.72 m/s). Moreover, the average wind speed is 
proportional to the frequency of the wind direction, the predominant winds being bora 
and mistral. Figure 7: shows the distribution of wind speed at the site with the 
marking of the average wind speed of 6 m/s (red line). Finally, Figure 8: shows the 
correlation matrix of the measurement parameters in the SCADA system (wind speed 
and direction, operating power, temperature, and pressure). 
 
It can be observed that wind speed has the highest correlation with power production 
(more than 0.8), while other meteorological parameters such as air direction, 
temperature, and pressure have a significantly lower correlation with power. The 
explanation for the low correlation between wind direction and production can be 

found in the problem of hourly averaging of wind direction (e.g., a wind whose 
direction oscillates between 0 and 360 degrees can lead to a mean value that 
suggests the opposite direction) and the possibility of modern WTG to rotate turbine 
nacelles in the optimal wind direction. 
 
It is expected that wind speed has a positive correlation with the performance of WF 
power higher than 0.9, while wind direction, pressure, and temperature have a 
slightly negative correlation with the performance of the wind farm's power. 
 

 
Figure 5: WF generation vs. wind speed and direction 

 

 

Figure 6: Wind rose with mean wind speed 

 

Josip Đaković, Bojan Franc, Igor Kuzle, Yongqian Liu, Deep Neural Network Configuration Sensitivity Analysis in Wind Power Forecasting, Journal of 
Energy, vol. 70 Number 3 (2021), p. 19–24 
https://doi.org/10.37798/202170389 



22

Figure 6: Wind rose with mean wind speed

Figure 7: Distribution of WS on WF’s location

Figure 8: SCADA correlation matrix 

3.2 Model
The input predictors of the model were two-year forecasts of wind speed 
and direction from the Aladin 2 meteorological model (NWP). The wind 
speed and direction forecasts are available in the form of 72-hour-long 
hourly sequences computed four times a day, i.e., every six hours. The 
total number of available sequences in a two-year period is regularly divi-
ded into three parts: training, validation, and test in the ratio of 70%, 10%, 
and 20% (the ratio is randomly selected). The Python 3 programming lan-
guage was used to build the model, with the specific modules for deep 
learning, Keras, and TensorFlow for operations with tensors. Fig. 9 shows 
the structure of the two models used. The first model (Fig. 9a) consists of 
one LSTM layer and one dense layer. The mentioned model processes 
sequences only in a chronological way. The other model used is shown in 
Fig. 9b) (bidirectional LSTM), which processes sequences in a chronolo-
gical and reverse manner. The internal states of the LSTM cell of forward 
and reverse sequences are combined with one of the possible functions 
(summation, multiplication, concatenation, etc.) and forwarded to the next 
layer (Fig. 9c).

(a)    (b)  (c)

Figure 9: a) one-directional LSTM model (model 1); b) bidirectional LSTM model 
(Bi-LSTM) (model 2); c) Working principle of BI-LSTM

Fig. 10 presents layers and belonging parameters (report from Tensorflow 
environment) that are adjusted during training. The bidirectional LSTM 
model has almost twice as big internal memory. The size of the internal 
memory is a random (hyper) parameter of the model, like many other para-
meters that should be set before training.

Fiure 10: a) Model 1 parameters; b) Model 2 parameters
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Figure 11: shows the process of training and validating models 1 and 2. The training 
of the model is terminated when the loss function has not changed over a certain 
number of epochs (e.g., 10 epochs) in the validation data. Figure 11: shows the root 
mean square error (RMSE) between the forecasted sequences and the real values 
on the validation data (the root of the loss function on the validation data), i.e., the 
validation metrics of the model. It is obvious that model 2 reaches the minimum of the 
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4. RESULTS
Fig. 11 shows the process of training and validating models 1 and 2. The 
training of the model is terminated when the loss function has not chan-
ged over a certain number of epochs (e.g., 10 epochs) in the validation 
data. Fig. 11b) shows the root mean square error (RMSE) between the 
forecasted sequences and the real values on the validation data (the root 
of the loss function on the validation data), i.e., the validation metrics of the 
model. It is obvious that model 2 reaches the minimum of the loss function 
faster, so the overall RMSE is more favorable in the case of bidirectional 
LSTM, which is due to the larger internal memory of model 2.

a)                                                                                               b)

Figure 11: a) Loss function of models 1 and 2 (training and validation) b) metrics of 
model’s accuracy on validation data (RMSE)

Fig. 12 presents the comparison of commercial tools (WPPT2 and WPPT3) 
with two test data samples, in comparison with real measurements of the 
SCADA system and comparison with forecasts of the presented deep le-
arning models. In addition, it is possible to combine the forecasts of both 
models to obtain an average prediction that can provide better results (red 
curve - ensemble_pred). It can be seen that the proposed models provide 
forecasts of commercial accuracy with a relatively shallow model structu-
re. Of course, more complex, and ‘deeper’ models could provide better 
results. It is interesting to note that the WPPT2 tool uses the same NWP 
forecasts (Aladin 2) as the input data used in this work, while WPPT3 uses 
multiple NWP forecast sources (Enfor). Fig 12 c) presents a horizon RMSE 
performance comparison on the test dataset (500 sequences) where it can 
be seen that the WPPT2 model had the worst while the ensembled model 
had the highest accuracy.
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CONCLUSION

This paper shows one of the approaches to applying deep learning to 
wind power forecasting using recurrent networks for sequential data. The 
process of data preparation and the data structure, as well as the model 
structure, are explained. Finally, a comparison of the forecasts obtained 
by the proposed methodology and commercial tools is presented using 
two samples, which provides insight into the accuracy of the forecasts 
obtained with methods of deep learning. The results showed that deep 
recurrent LSTM-based networks can outperform commercially available 
forecasting tools when trained using only the wind speed forecast as an 
input feature. Future research will focus on developing more complex mo-
dels of deep learning to increase overall accuracy.
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