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Summary
This paper presents a method for Finite-Impulse-Response (FIR) modeling of voltage instrument transformers. The method is based on Wiener filte-
ring and measurement of the transformer response in the frequency domain using a low frequency network analyzer. The proposed method allows, 
through digital filtering operation, an accurate simulation of the transformer response to transient excitation. Furthermore, the proposed approach to 
the modeling of the system function allows unequal spacing of the frequency samples. The linearity of the transformer is analyzed applying the Fourier 
analysis and different waveforms of the primary voltage, and methods for the model order selection, based on the generalized information criterion, 
are discussed and applied. The theoretical analysis is confirmed with measurements in time domain, using the recurrent surge generator. 
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Introduction
Since transformers are typically constructed to work almost continuously 
during a period of forty years or more, they should be able to withstand 
both steady-state operation as well as possible transients in power grid. 
Most of the time the transformers are subjected to variations of less than 
10% nominal voltage and 1% nominal frequency. All other types of excita-
tion are considered as transients. Some of the typical causes of transients 
within the power grid are short circuits, switching operations, atmospheric 
discharges and almost any other changes within the system. Stresses that 
the insulation has to withstand can often have a great impact on design, 
performance and the overall price of the equipment. Standards typically 
classify transients into four groups (IEC 60071-2, 1996; IEEE 1313.2, 1999): 
low-frequency transients, slow front transients, fast front transients and 
very fast front transients. This paper focuses on the fast front transients 
which are normally aperiodic waves associated with near atmospheric dis-
charges with a front time between 0.1 and 20 μs. 

Due to various switching operations and atmospheric discharges, tran-
sformers are exposed to numerous overvoltages and have to be designed 
to correctly operate in those circumstances. The effects of transients 
are primarily visible on the transformer windings. The winding’s ability to 
withstand overvoltages is determined by the shape of the transient signal, 
winding’s geometry, characteristics of the insulation material and the ove-
rall condition of the winding including its age and past exposition to tran-

sients. A great number of transformer faults occur due to the insulation 
breakdown between turns of the winding. Steady state voltages under no-
minal grid frequency distribute linearly across the turns of the transformer 
winding and can be precisely determined. However, fast front transients 
usually lead to highly nonlinear voltage distribution. This often leads to high 
voltage stresses, especially at the beginning sections of the winding. The-
refore, adequate mathematical models are needed to study the winding 
behavior at voltages with high frequency components.

Two main approaches to the transient modeling of transformers can be 
found in the literature published until today: the first one tries to accura-
tely model the internal winding structure of transformers by modeling the 
capacitances, self- and mutual inductances and resistances. The second 
approach uses a black-box approach, where a model is built solely on 
the input/output data acquired during properly chosen experiments. In [1] 
the black box-approach uses bilinear transformation to build a discrete-
time, z-domain model. In [2] a system identification approach is applied 
in a pole-zero sub-space modeling of distribution transformers intended 
primarily for the transformer fault-detection. This was done using frequ-
ency response analysis (FRA) measurements. In [3] a review of the appli-
cations of z-transform in electromagnetic transient simulations of power 
systems is given, with presented applications in transmission line mode-
ling and power networks. In [4] a detailed overview of frequency-domain 
measurements methods for the validation of transformer models is given, 
alongside with methods for their rational-function approximation and re-
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cursive convolution procedures for obtaining time-domain responses. In 
[5] a method for the black-box estimation of power transformers using the 
measurements performed with commercially available frequency-respon-
se-analyzers is presented. Since FRA equipment, dedicated for transfor-
mer measurements, measure input and output voltages grounded through 
matching resistors, a method based on two-independent measurements 
was developed that finally gives the admittance matrix, which can be used 
for the conversion to time-domain for no-load condition.

The main purpose of this paper is to provide a measurement procedure 
and a tool for the black-box estimation of conveying the fast or lightning 
transients of the voltage instrument transformers.

The approach is based on the frequency-domain measurements, and 
the measured response is used to build a discrete-time, Finite Impulse 
Response (FIR) transformer model. Once determined, FIR model allows, 
through the digital filtering operation, a very easy time-domain calculation 
of the system’s response at any transient excitation. Through the digital 
filtering operation (closely related to the concept of recursive convoluti-
on [1]), the model output at any sample number n can be calculated by 
summation:

       (1)

where L denotes model order, x(n) is time-sampled input signal, and wi are 
FIR model coefficients.  

Wiener Filtering
Let a real input sequence xk and a desired real output sequence dk for 
k=0,1,2,… be given. The goal of Wiener filtering [6] is to find an Lth-order 
FIR filter (with filter coefficients w0,….wL)

                                                                   
(2)

which produces from the input, xk, an estimate, d’k , that minimizes the 
error between desired and modeled response. 

This is a reduced-order approximation of the true impulse response of the 
system H(×).  Here, wr are filter coefficients, and z denotes the variable in 
the z-domain.

Its frequency response is characterized by

        3)   

where T denotes sample interval and f is the frequency.

The optimal solution of filter coefficients is obtained by solving the time-
discrete Wiener-Hopf equation [6] .

       (4)

Here R denotes the autocorrelation matrix of the input, xk

                                              
(5)

R is a symmetric Toeplitz matrix. The cross-correlation vector, p, between 
the desired response, dk, and the input, xk, reads as follows [6]:

      (6)                         

Further, 

     (7)                      

        

denotes the coefficient vector of the Lth-order Wiener filter.                                                             

The Wiener-Hopf equation will not have a unique solution unless the equ-
ations are independent. 

The transfer function to be modeled can be described in the frequency 
domain by a set of complex frequency samples:

       (8)

                                           

Here,  defines magnitude response,  defines phase response, and  is 
the set of discrete frequencies for which the transfer function is defined. 
According to the Shannon sampling theorem, the sampling frequency 
fs=1/T should be greater than twice the maximum frequency . Here, T de-
notes the sample interval.

For the system described by the transfer function (3), the input autocorre-
lation matrix, R, and the desired-to-input cross-correlation vector, p, are 
finally [7]: 

                             
(9)

                                                      
(10)                       

Here,  denotes the sample interval, i.e. distance between samples, and cl 
is a frequency-dependent positive weighting factor. 

A Wiener-Hopf equation describes a system of linear equations that has a 
unique solution if R is a nonsingular matrix, i.e. if it is invertible [8]. In such a 
case, the system can generally be solved using Gaussian elimination. For 
some nonsingular matrices, the solution can also be found using certain 
factorization methods or iterative methods [9]. The Toeplitz structure of R 
allows application of Levinson’s or Trench’s algorithm as well [10]. 

A Wiener–Hopf equation (4) describes a system of linear equations that 
has a unique solution if R is a nonsingular matrix. Since every positive 
definite matrix is nonsingular [8], if the autocorrelation matrix is positive 
definite, it would be invertible. The matrix R is guaranteed to be a positive 
definite if the input signal x(t) is spectrally rich, which will be fulfilled if there 
is at least half as many frequency components in x(t) as there are coeffici-
ents in the Wiener filter [11], [12]. This condition will be easily satisfied with 
the increased number of the frequency samples in the measurements. In 
such a case, the solution of the system of equations (4) can be easily found 
using the MATLAB function mldivide, which performs Gaussian elimination 
for n × n square matrices and column vectors with n components. This 
technique was applied in all cases presented in the subsequent sections.

It was observed in our measurements, that measured transfer function, 
once converted from the frequency into time domain, may tend to be shi-
fted “in advance”. This does not cause any problem when dealing with 
the Fourier series, due to its time-periodicity. In system identification, it 
makes the impulse response of the target system noncausal. To include 
this shifted, “negative-time” portion of the system’s impulse response in 
the model, it is wise to introduce a time delay in the desired response dk 
for a fixed number of samples. In the frequency domain, it is performed by 
multiplication of the complex transfer function with , where n0 denotes the 
delay in samples, T is sample interval and f is frequency. The possible cau-
ses of this phenomenon can be attributed to imperfections in the “through” 
calibration or measurement errors. It was also observed in radio-frequency 
measurements [13] and in FEM simulations [14] with the same solution. 
The modeling delay is discussed in more details in [15].

 3 

The main purpose of this paper is to provide a measurement procedure and a tool for the 
black-box estimation of conveying the fast or lightning transients of the voltage instrument 
transformers. 

The approach is based on the frequency-domain measurements, and the measured response 
is used to build a discrete-time, Finite Impulse Response (FIR) transformer model. Once 
determined, FIR model allows, through the digital filtering operation, a very easy time-domain 
calculation of the system's response at any transient excitation. Through the digital filtering 
operation (closely related to the concept of recursive convolution [1]), the model output at any 
sample number n can be calculated by summation: 

)(.......)1()()( 10 Lnxwnxwnxwny L                                            (1) 
where L denotes model order, x(n) is time-sampled input signal, and wi are FIR model 
coefficients.   

2. WIENER FILTERING 
 

Let a real input sequence xk and a desired real output sequence dk for k=0,1,2,… be given. 
The goal of Wiener filtering 6 is to find an Lth-order FIR filter (with filter coefficients 
w0,….wL) 





L

r

r
r zwzH

0
)(  ,                                                                  (2) 

which produces from the input, xk, an estimate, d’k , that minimizes the error between desired 
and modeled response.  
This is a reduced-order approximation of the true impulse response of the system H().  Here, 
wr are filter coefficients, and z denotes the variable in the z-domain. 
Its frequency response is characterized by 





L

k

fTjk
k ewfH

0

2)(                                                                 (3)   
 

where T denotes sample interval and f is the frequency.
 

 
The optimal solution of filter coefficients is obtained by solving the time-discrete Wiener-Hopf 
equation 6  

pRw  .                                                                            (4) 
Here R denotes the autocorrelation matrix of the input, xk 

























(0)  .....                 )1(        )(
.
.

)1(          ......        (0)        (1)
)(                  .....   (1)        (0)

xxxxxx

xxxxxx

xxxxxx

rL-rLr

L-rrr
Lrrr

R                                               (5) 

R is a symmetric Toeplitz matrix. The cross-correlation vector, p, between the desired 
response, dk, and the input, xk, reads as follows 6: 

 T)(           .......     )1(    )0( Lrrr dxdxdxp                                                   (6)                          
Further,  

 3 

The main purpose of this paper is to provide a measurement procedure and a tool for the 
black-box estimation of conveying the fast or lightning transients of the voltage instrument 
transformers. 

The approach is based on the frequency-domain measurements, and the measured response 
is used to build a discrete-time, Finite Impulse Response (FIR) transformer model. Once 
determined, FIR model allows, through the digital filtering operation, a very easy time-domain 
calculation of the system's response at any transient excitation. Through the digital filtering 
operation (closely related to the concept of recursive convolution [1]), the model output at any 
sample number n can be calculated by summation: 

)(.......)1()()( 10 Lnxwnxwnxwny L                                            (1) 
where L denotes model order, x(n) is time-sampled input signal, and wi are FIR model 
coefficients.   

2. WIENER FILTERING 
 

Let a real input sequence xk and a desired real output sequence dk for k=0,1,2,… be given. 
The goal of Wiener filtering 6 is to find an Lth-order FIR filter (with filter coefficients 
w0,….wL) 





L

r

r
r zwzH

0
)(  ,                                                                  (2) 

which produces from the input, xk, an estimate, d’k , that minimizes the error between desired 
and modeled response.  
This is a reduced-order approximation of the true impulse response of the system H().  Here, 
wr are filter coefficients, and z denotes the variable in the z-domain. 
Its frequency response is characterized by 





L

k

fTjk
k ewfH

0

2)(                                                                 (3)   
 

where T denotes sample interval and f is the frequency.
 

 
The optimal solution of filter coefficients is obtained by solving the time-discrete Wiener-Hopf 
equation 6  

pRw  .                                                                            (4) 
Here R denotes the autocorrelation matrix of the input, xk 

























(0)  .....                 )1(        )(
.
.

)1(          ......        (0)        (1)
)(                  .....   (1)        (0)

xxxxxx

xxxxxx

xxxxxx

rL-rLr

L-rrr
Lrrr

R                                               (5) 

R is a symmetric Toeplitz matrix. The cross-correlation vector, p, between the desired 
response, dk, and the input, xk, reads as follows 6: 

 T)(           .......     )1(    )0( Lrrr dxdxdxp                                                   (6)                          
Further,  

 3 

The main purpose of this paper is to provide a measurement procedure and a tool for the 
black-box estimation of conveying the fast or lightning transients of the voltage instrument 
transformers. 

The approach is based on the frequency-domain measurements, and the measured response 
is used to build a discrete-time, Finite Impulse Response (FIR) transformer model. Once 
determined, FIR model allows, through the digital filtering operation, a very easy time-domain 
calculation of the system's response at any transient excitation. Through the digital filtering 
operation (closely related to the concept of recursive convolution [1]), the model output at any 
sample number n can be calculated by summation: 

)(.......)1()()( 10 Lnxwnxwnxwny L                                            (1) 
where L denotes model order, x(n) is time-sampled input signal, and wi are FIR model 
coefficients.   

2. WIENER FILTERING 
 

Let a real input sequence xk and a desired real output sequence dk for k=0,1,2,… be given. 
The goal of Wiener filtering 6 is to find an Lth-order FIR filter (with filter coefficients 
w0,….wL) 





L

r

r
r zwzH

0
)(  ,                                                                  (2) 

which produces from the input, xk, an estimate, d’k , that minimizes the error between desired 
and modeled response.  
This is a reduced-order approximation of the true impulse response of the system H().  Here, 
wr are filter coefficients, and z denotes the variable in the z-domain. 
Its frequency response is characterized by 





L

k

fTjk
k ewfH

0

2)(                                                                 (3)   
 

where T denotes sample interval and f is the frequency.
 

 
The optimal solution of filter coefficients is obtained by solving the time-discrete Wiener-Hopf 
equation 6  

pRw  .                                                                            (4) 
Here R denotes the autocorrelation matrix of the input, xk 

























(0)  .....                 )1(        )(
.
.

)1(          ......        (0)        (1)
)(                  .....   (1)        (0)

xxxxxx

xxxxxx

xxxxxx

rL-rLr

L-rrr
Lrrr

R                                               (5) 

R is a symmetric Toeplitz matrix. The cross-correlation vector, p, between the desired 
response, dk, and the input, xk, reads as follows 6: 

 T)(           .......     )1(    )0( Lrrr dxdxdxp                                                   (6)                          
Further,  

 3 

The main purpose of this paper is to provide a measurement procedure and a tool for the 
black-box estimation of conveying the fast or lightning transients of the voltage instrument 
transformers. 

The approach is based on the frequency-domain measurements, and the measured response 
is used to build a discrete-time, Finite Impulse Response (FIR) transformer model. Once 
determined, FIR model allows, through the digital filtering operation, a very easy time-domain 
calculation of the system's response at any transient excitation. Through the digital filtering 
operation (closely related to the concept of recursive convolution [1]), the model output at any 
sample number n can be calculated by summation: 

)(.......)1()()( 10 Lnxwnxwnxwny L                                            (1) 
where L denotes model order, x(n) is time-sampled input signal, and wi are FIR model 
coefficients.   

2. WIENER FILTERING 
 

Let a real input sequence xk and a desired real output sequence dk for k=0,1,2,… be given. 
The goal of Wiener filtering 6 is to find an Lth-order FIR filter (with filter coefficients 
w0,….wL) 





L

r

r
r zwzH

0
)(  ,                                                                  (2) 

which produces from the input, xk, an estimate, d’k , that minimizes the error between desired 
and modeled response.  
This is a reduced-order approximation of the true impulse response of the system H().  Here, 
wr are filter coefficients, and z denotes the variable in the z-domain. 
Its frequency response is characterized by 





L

k

fTjk
k ewfH

0

2)(                                                                 (3)   
 

where T denotes sample interval and f is the frequency.
 

 
The optimal solution of filter coefficients is obtained by solving the time-discrete Wiener-Hopf 
equation 6  

pRw  .                                                                            (4) 
Here R denotes the autocorrelation matrix of the input, xk 

























(0)  .....                 )1(        )(
.
.

)1(          ......        (0)        (1)
)(                  .....   (1)        (0)

xxxxxx

xxxxxx

xxxxxx

rL-rLr

L-rrr
Lrrr

R                                               (5) 

R is a symmetric Toeplitz matrix. The cross-correlation vector, p, between the desired 
response, dk, and the input, xk, reads as follows 6: 

 T)(           .......     )1(    )0( Lrrr dxdxdxp                                                   (6)                          
Further,  

 3 

The main purpose of this paper is to provide a measurement procedure and a tool for the 
black-box estimation of conveying the fast or lightning transients of the voltage instrument 
transformers. 

The approach is based on the frequency-domain measurements, and the measured response 
is used to build a discrete-time, Finite Impulse Response (FIR) transformer model. Once 
determined, FIR model allows, through the digital filtering operation, a very easy time-domain 
calculation of the system's response at any transient excitation. Through the digital filtering 
operation (closely related to the concept of recursive convolution [1]), the model output at any 
sample number n can be calculated by summation: 

)(.......)1()()( 10 Lnxwnxwnxwny L                                            (1) 
where L denotes model order, x(n) is time-sampled input signal, and wi are FIR model 
coefficients.   

2. WIENER FILTERING 
 

Let a real input sequence xk and a desired real output sequence dk for k=0,1,2,… be given. 
The goal of Wiener filtering 6 is to find an Lth-order FIR filter (with filter coefficients 
w0,….wL) 





L

r

r
r zwzH

0
)(  ,                                                                  (2) 

which produces from the input, xk, an estimate, d’k , that minimizes the error between desired 
and modeled response.  
This is a reduced-order approximation of the true impulse response of the system H().  Here, 
wr are filter coefficients, and z denotes the variable in the z-domain. 
Its frequency response is characterized by 





L

k

fTjk
k ewfH

0

2)(                                                                 (3)   
 

where T denotes sample interval and f is the frequency.
 

 
The optimal solution of filter coefficients is obtained by solving the time-discrete Wiener-Hopf 
equation 6  

pRw  .                                                                            (4) 
Here R denotes the autocorrelation matrix of the input, xk 

























(0)  .....                 )1(        )(
.
.

)1(          ......        (0)        (1)
)(                  .....   (1)        (0)

xxxxxx

xxxxxx

xxxxxx

rL-rLr

L-rrr
Lrrr

R                                               (5) 

R is a symmetric Toeplitz matrix. The cross-correlation vector, p, between the desired 
response, dk, and the input, xk, reads as follows 6: 

 T)(           .......     )1(    )0( Lrrr dxdxdxp                                                   (6)                          
Further,  

 4 

 T10            .......         Lwwww                                                      (7)                               
denotes the coefficient vector of the Lth-order Wiener filter.                                                              
The Wiener-Hopf equation will not have a unique solution unless the equations are 
independent.  
The transfer function to be modeled can be described in the frequency domain by a set of 
complex frequency samples: 

 NljaH lll ,1   ,      )exp()(   .                                               (8)                                            
Here, la  defines magnitude response, l  defines phase response, and )1,....,(l Nl   is the set 
of discrete frequencies for which the transfer function is defined. According to the Shannon 
sampling theorem, the sampling frequency fs=1/T should be greater than twice the maximum 
frequency l . Here, T denotes the sample interval. 
For the system described by the transfer function (3), the input autocorrelation matrix, R, 
and the desired-to-input cross-correlation vector, p, are finally [7]:  
 

















































N

l
l

N

l
ll

N

l
l

N

l
ll

N

l
ll

N

l
ll

N

l
l

cTLc

cTc

TLcTcc

1

2

1

2

1

2

1=

2

1

2

1=

2

1

2

           ......                  .....  .          π2cos

.

.

     π2cos

π2cos                  .....   π2cos                    

2
1







R                              (9) 

 





















































N

l
llll

N

l
llll

N

l
lll

TLca

Tca

ca

1

2

1

2

1

2

)π2cos(

.

.

)π2cos(

)cos(

 
2
1







p                                                       (10)                        

Here, 
sf

T 1
  denotes the sample interval, i.e. distance between samples, and cl is a frequency-

dependent positive weighting factor.  
A Wiener-Hopf equation describes a system of linear equations that has a unique solution if R 
is a nonsingular matrix, i.e. if it is invertible 8. In such a case, the system can generally be 
solved using Gaussian elimination. For some nonsingular matrices, the solution can also be 
found using certain factorization methods or iterative methods 9. The Toeplitz structure of 
R allows application of Levinson’s or Trench’s algorithm as well 10.  
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For the system described by the transfer function (3), the input autocorrelation matrix, R, 
and the desired-to-input cross-correlation vector, p, are finally [7]:  
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Here, 
sf

T 1
  denotes the sample interval, i.e. distance between samples, and cl is a frequency-

dependent positive weighting factor.  
A Wiener-Hopf equation describes a system of linear equations that has a unique solution if R 
is a nonsingular matrix, i.e. if it is invertible 8. In such a case, the system can generally be 
solved using Gaussian elimination. For some nonsingular matrices, the solution can also be 
found using certain factorization methods or iterative methods 9. The Toeplitz structure of 
R allows application of Levinson’s or Trench’s algorithm as well 10.  
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dependent positive weighting factor.  
A Wiener-Hopf equation describes a system of linear equations that has a unique solution if R 
is a nonsingular matrix, i.e. if it is invertible 8. In such a case, the system can generally be 
solved using Gaussian elimination. For some nonsingular matrices, the solution can also be 
found using certain factorization methods or iterative methods 9. The Toeplitz structure of 
R allows application of Levinson’s or Trench’s algorithm as well 10.  
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The main purpose of this paper is to provide a measurement procedure and a tool for the 
black-box estimation of conveying the fast or lightning transients of the voltage instrument 
transformers. 

The approach is based on the frequency-domain measurements, and the measured response 
is used to build a discrete-time, Finite Impulse Response (FIR) transformer model. Once 
determined, FIR model allows, through the digital filtering operation, a very easy time-domain 
calculation of the system's response at any transient excitation. Through the digital filtering 
operation (closely related to the concept of recursive convolution [1]), the model output at any 
sample number n can be calculated by summation: 
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where L denotes model order, x(n) is time-sampled input signal, and wi are FIR model 
coefficients.   

2. WIENER FILTERING 
 

Let a real input sequence xk and a desired real output sequence dk for k=0,1,2,… be given. 
The goal of Wiener filtering 6 is to find an Lth-order FIR filter (with filter coefficients 
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which produces from the input, xk, an estimate, d’k , that minimizes the error between desired 
and modeled response.  
This is a reduced-order approximation of the true impulse response of the system H().  Here, 
wr are filter coefficients, and z denotes the variable in the z-domain. 
Its frequency response is characterized by 
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where T denotes sample interval and f is the frequency.
 

 
The optimal solution of filter coefficients is obtained by solving the time-discrete Wiener-Hopf 
equation 6  

pRw  .                                                                            (4) 
Here R denotes the autocorrelation matrix of the input, xk 
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R is a symmetric Toeplitz matrix. The cross-correlation vector, p, between the desired 
response, dk, and the input, xk, reads as follows 6: 

 T)(           .......     )1(    )0( Lrrr dxdxdxp                                                   (6)                          
Further,  
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Measurement Set-Up
The measurements for the frequency-domain modeling of transformers 
can be divided in two approaches [4]:

— voltage transfer measurements
— admittance matrix measurements

For linear-time-invariant systems, the second approach gives a possibility 
of calculating the response for different loads (including no-load condition), 
while the voltage transfer measurement gives the response for the no-load 
condition or for a fixed load. Regarding the linearity, the model is assumed 
to be linear [5] since its experimental verification was carried out at low 
voltage in comparison to nominal voltages. This is generally the case for 
routine lightning-impulse testing of transformers.

The modeling procedure proposed in this paper applies the voltage tran-
sfer measurement, which was performed using a LF-RF network analyzer 
Keysight ENA 5061B and gain-phase test port. The LF option enables 
measurement of voltage transfer functions for frequencies spanning from 
5 Hz to 30 MHz using the gain-phase port, while the input impedance 
can be switched between 50 Ω and 1 MΩ. The possibility of setting the 
high input impedance (1 MΩ) allows using high impedance oscilloscope 
probes with ratio 10:1 and 10 MΩ input impedance (shunted with the pro-
be capacitance), which is approximately the same load applied with the 
oscilloscope probe in the time-domain measurements with the recurrent 
surge generator. Therefore, two oscilloscope probes Agilent 2862A (15 pF, 
10 MΩ) were used in the measurement, and the “through” calibration of 
the analyzer was performed prior to measurements, which eliminates the 
influence of the probes on the measurement. This is especially important 
for the measurements in the MHz range. Use of high impedance (10 MΩ) 
probes further enhances the measurement in the MHz range, since using 
a 10:1 passive probes for oscilloscopes generally gives small input capa-
citance around 10 pF at the probe end. In this way, the load impedance is 
significantly increased when comparing to 1:1 passive probes. Similarly to 
general oscilloscope applications, it is an orthodox way for high impedan-
ce probing at higher frequencies [16]. The measurements were performed 
in the frequency range 5 Hz to 3 MHz, with the intermediate frequency 
bandwidth (IFBW) equal to 2 Hz. Use of low values of IFBW improves 
the measurement results, and in the same time slows the measurement 
process. For the same frequency range, increasing the IFBW to 100 Hz 
makes the measurement significantly faster, and does not the corrupt the 
results. The time-domain measurements were performed using a recurrent 
surge generator Haefely 481 and digital oscilloscope Tektronix DPO4054 
equipped with voltage probes Tektronix P6139A (8 pF, 10MΩ). The FIR 
modeling was performed using a custom-made program in MATLAB, 
with sampling frequency equal to 6.004 MHz, which ensures, due to the 
Shannon sampling theorem the upper frequency limit of 3 MHz. To avoid 
non-causal response, a fixed modeling delay of 5 samples is introduced in 
measured transfer function. 

The transformer is a voltage instrument transformer designed and manu-
factured in our laboratory for a digital sampling wattmeter application [17]. 
Its characteristics are as follows: nominal primary voltage is 230 V (RMS) 
at 50 Hz, class 1 according to IEC 61869-3, the targeted number of turns 
in the primary winding was Np=1336 and Ns=45 in the secondary winding. 
The targeted maximum flux density at the primary voltage of 250 V (RMS) 
was set to 0.6 T, which ensures that the magnetic flux density is far bellow 
the saturation knee even at the primary voltage equal to 120% of its no-
minal value.  The wire diameter in the secondary was chosen to be big 
enough to allow the secondary winding to be wound in a complete layer. 
Due to the high turn ratio, it was possible only with relatively big wire dia-
meters, and the wire diameter of the secondary was chosen to be 1.2 mm. 
The wire diameter of the primary is 0.22 mm. In this way, each of the two 
sections of the primary consists of 4 complete layers. All layers were mutu-
ally isolated using the cellulose paper to allow easier assembling. The final 
number of turns was slightly different of the targeted, because all layers 
were wound completely to the edge of the former. The transformer core 
was a standard CM core CM85 (CM85b, older label SM85) core produced 
by Iskra Sistemi d.d. The CM cores consist of four core halves, with the coil 
former on the middle leg. To decrease leakage inductances and distribu-
ted capacitances, the sectionalized primary winding [18]-[21] with simple 
interleave was applied (Fig. 1). Due to the small burden (input impedance 
of the acquisition card NI-4461), the rated output of the VIT was chosen 
to be 1 VA at power factor 1. Fig. 2 presents the photo of the transformer. 

Figure 1. Configuration with simple interleave – sectionalized primary

Figure 2. Transformer with the opened housing

Non-linearity analysis
Table I . Harmonic components of the secondary voltage for the single-tone stimulus

Harmonic order 1 2 3 4 5 6 7 8 9 10
Frequency (Hz) 50 100 150 200 250 300 350 400 450 500
Magnitude (%, 
compared to the 
fundamental)

100 0 0.8 0.7 0.3 0.1 0.4 0.1 0.1 0.2

The assumed linearity of the target system between primary and secon-
dary voltages was further investigated applying the single-tone and multi-
tone excitation and Fourier analysis. The nonlinear transfer function of a 
system generates the higher harmonic components at the output of the 
system, when the pure sine stimulus is applied. For the multi-tone excitati-
on, the intermodulation occurs as well. The targeted maximum flux density 
in the transformer core, at the primary voltage of 250 V (RMS) was set in 
the design to 0.6 T, which ensures that the magnetic flux density is far 
below the saturation knee even at the primary voltage equal to 120% of 
its nominal value. Thus, for the nominal primary voltage and primary vol-
tages lower than the nominal, it is expected that the relationship between 
primary and secondary voltage is nearly linear in the no-load condition. 
The measurement set-up for the non-linearity analysis was consisted of 
a Calmet C300 three phase power calibrator and tester and the power 
analyzer Chauvin-Arnoux CA8220. The sinusoidal distortion of the primary 
voltage, as declared by the calibrator manufacturer (Calmet) is 0.05 %.

In the first set of the measurements, the single-tone voltage was applied 
at the primary, where the primary voltage was nominal (e.g. 230 V, 50 Hz). 
At the secondary the RMS values of the first 10 harmonics were mea-
sured, as well as the total harmonic distortion in relation to the fundamental 
(THDF) for the first 50 harmonic components.  THDF  is expressed as

                (11)

where I1 denotes magnitude of the fundamental harmonic, and I2 to In de-
note magnitudes of the higher harmonics. The measured THDF of the se-
condary voltage was 1.5 %, while the RMS values of the first 10 harmonic 
components, in percentages compared to the fundamental are systemi-
zed in the Table I.

For the two-tone excitation, the further insight in the generation of the in-
termodulation components can be obtained using the following analysis: 
Suppose that the non-linear transcharacteristic of the system can be 
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linearity analysis was consisted of a Calmet C300 three phase power calibrator and tester and 
the power analyzer Chauvin-Arnoux CA8220. The sinusoidal distortion of the primary 
voltage, as declared by the calibrator manufacturer (Calmet) is 0.05 %. 
     In the first set of the measurements, the single-tone voltage was applied at the primary, 
where the primary voltage was nominal (e.g. 230 V, 50 Hz). At the secondary the RMS values 
of the first 10 harmonics were measured, as well as the total harmonic distortion in relation 
to the fundamental (THDF) for the first 50 harmonic components.  THDF  is expressed as 
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where I1 denotes magnitude of the fundamental harmonic, and I2 to In denote magnitudes of 
the higher harmonics. The measured THDF of the secondary voltage was 1.5 %, while the 
RMS values of the first 10 harmonic components, in percentages compared to the 
fundamental are systemized in the Table I. 
 
    For the two-tone excitation, the further insight in the generation of the intermodulation 
components can be obtained using the following analysis: Suppose that the non-linear 
transcharacteristic of the system can be expanded about the operating point by mean of 
power series 
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where ei and eo are the alternating parts of the input and output voltages. If the input signal 
is composed of two cosines with radian frequencies p and q,  
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the harmonic distortion and intermodulation components are 22: 
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More generally, if the input signal is consisted of the two sine components, it is expected that 
the non-linear transfer function (transcharacteristic) generates both the higher harmonic 
components of each input sine (with the radian frequencies 2p, 3p ,,,  2q, 3q,   etc.) and the 
intermodulation components with the radian frequencies p+q , p-q ,  2p+q , 2p-q , etc. For the 
input voltage consisted of two sine tones with the frequencies equal to 50 and 100 Hz, it is 
this expected that at the output of the system the second-order summation component with 
the frequency equal to 150 Hz is certainly present. 
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expanded about the operating point by mean of power series

(12)

where ei and eo are the alternating parts of the input and output voltages. 
If the input signal is composed of two cosines with radian frequencies p 
and q, 

(13)

the harmonic distortion and intermodulation components are [22]:

                            
(14)

More generally, if the input signal is consisted of the two sine components, 
it is expected that the non-linear transfer function (transcharacteristic) ge-
nerates both the higher harmonic components of each input sine (with the 
radian frequencies 2p, 3p ,,,  2q, 3q,   etc.) and the intermodulation com-
ponents with the radian frequencies p+q , p-q ,  2p+q , 2p-q , etc. For 
the input voltage consisted of two sine tones with the frequencies equal 
to 50 and 100 Hz, it is this expected that at the output of the system the 
second-order summation component with the frequency equal to 150 Hz 
is certainly present.

Figure 3. Two-tone waveform

In the second set of measurements, the primary voltage generated by the 
calibrator was consisted of two sine tones with the equal magnitudes and 
frequencies 50 Hz and 100 Hz. Fig. 3 presents the waveform of the primary 
voltage. The RMS value of this composite voltage was set again to 230 
V RMS. In the Table II, the harmonic analysis of the secondary voltage is 
presented.

Table II . Harmonic components of the secondary voltage for the two-tone stimulus

Harmonic order 1 2 3 4 5 6 7 8 9 10
Frequency (Hz) 50 100 150 200 250 300 350 400 450 500
Magnitude (%, 
compared to the 
fundamental)

100 99.5 0.7 0.8 0.4 0.2 0.4 0.4 0.4 0.4

It can be seen from the Tables I and II, that the magnitudes of the ge-
nerated higher harmonic components are negligible, compared to the 
fundamental and that the THDF is low at the secondary for a single-to-
ne excitation. Moreover, for the two-tone excitation, the magnitude of the 
summation tone (150 Hz) is equal to its relative magnitude for the single-to-
ne excitation, which further approves that the intermodulation components 
are negligible, and that the system can be regarded as linear. It should be 
pointed that the whole analysis is presented for the primary and secondary 
voltages, which are the measured parameters for both FRA and impulse 
response analysis. The possibly non-sinusoidal magnetization current the-
refore does not influence the assumed linearity of the relationship between 
the primary and secondary voltages.

Results
Standard lightning impulse (LI)

The first set of time-domain measurements was performed with the stan-
dard lightning impulse (1,2 μs/50 μs) according to IEC 60060-1. The sam-
ple interval of the oscilloscope in the time-domain measurements with the 
recurrent surge generator was 10 ns. To match the exciting signal with 
the sample period of the FIR model (e.g. = 0.16656 μs), the LI was resa-
mpled using MATLAB function interp.  The filter order was L=300 (i.e. the 
overall number of the coefficients was 301), and the modeling delay was 5 
samples. The frequency-dependent positive weighting factors cl were all 
set to 1. Fig. 4 presents the frequency response (magnitude) of the model, 
compared to the frequency domain measurements using the network ana-
lyzer. Fig. 5 depicts the measured input voltage, while Fig. 6 presents the 
simulated response. The simulated response is the result of the digital fil-
tering operation using the estimated FIR model and measured excitation. 
Fig. 7 gives the comparison of the simulated and measured response in 
the time-domain. The simulated time-domain response is shifted “in left” 
for 5 samples, to compensate the modeling delay.

Figure 4. Comparison of measured and modeled transfer function - magnitude 

Figure 5. Measured excitation – full wave
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voltage, as declared by the calibrator manufacturer (Calmet) is 0.05 %. 
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Figure 3. Two-tone waveform 

 
In the second set of measurements, the primary voltage generated by the calibrator was 
consisted of two sine tones with the equal magnitudes and frequencies 50 Hz and 100 Hz. Fig. 
3 presents the waveform of the primary voltage. The RMS value of this composite voltage was 
set again to 230 V RMS. In the Table II, the harmonic analysis of the secondary voltage is 
presented. 
 

Table II . Harmonic components of the secondary voltage for the two-tone stimulus 
 
Harmonic 
order 

1 2 3 4 5 6 7 8 9 10 

Frequency 
(Hz) 

50 100 150 200 250 300 350 400 450 500 

Magnitude 
(%, compared 
to the 
fundamental) 

100 99.5 0.7 0.8 0.4 0.2 0.4 0.4 0.4 0.4 

 
It can be seen from the Tables I and II, that the magnitudes of the generated higher harmonic 
components are negligible, compared to the fundamental and that the THDF is low at the 
secondary for a single-tone excitation. Moreover, for the two-tone excitation, the magnitude of 
the summation tone (150 Hz) is equal to its relative magnitude for the single-tone excitation, 
which further approves that the intermodulation components are negligible, and that the 
system can be regarded as linear. It should be pointed that the whole analysis is presented for 
the primary and secondary voltages, which are the measured parameters for both FRA and 
impulse response analysis. The possibly non-sinusoidal magnetization current therefore does 
not influence the assumed linearity of the relationship between the primary and secondary 
voltages. 
 

5. RESULTS 
 5.1 Standard lightning impulse (LI) 

 
The first set of time-domain measurements was performed with the standard lightning 

impulse (1,2 μs/50 μs) according to IEC 60060-1. The sample interval of the oscilloscope in the 
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time-domain measurements with the recurrent surge generator was 10 ns. To match the 
exciting signal with the sample period of the FIR model (e.g. 610004.6/1  = 0.16656 μs), the LI 
was resampled using MATLAB function interp.  The filter order was L=300 (i.e. the overall 
number of the coefficients was 301), and the modeling delay was 5 samples. The frequency-
dependent positive weighting factors cl were all set to 1. Fig. 4 presents the frequency 
response (magnitude) of the model, compared to the frequency domain measurements using 
the network analyzer. Fig. 5 depicts the measured input voltage, while Fig. 6 presents the 
simulated response. The simulated response is the result of the digital filtering operation 
using the estimated FIR model and measured excitation. Fig. 7 gives the comparison of the 
simulated and measured response in the time-domain. The simulated time-domain response 
is shifted “in left” for 5 samples, to compensate the modeling delay. 

 
 

 
 

Figure 4. Comparison of measured and modeled transfer function - magnitude  
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Figure 5. Measured excitation – full wave 
 
 

 
Figure 6. Simulated response – full wave 
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Figure 6. Simulated response – full wave

Figure 7. Comparison of measured and simulated response for the full wave excitation

Lightning impulse chopped on the front (LI-CF)

The second set of time-domain measurements was performed using the li-
ghtning impulse chopped on the front according to IEC 60060-1. All settin-
gs were the same as in (A), except the sample interval of the oscilloscope, 
which was 4 ns. Fig. 8 depicts the measured input voltage, while Fig. 9 
gives the comparison of the simulated and measured response in the ti-
me-domain. The simulated time-domain response is shifted “in left” for 5 
samples, to compensate the modeling delay. 

Figure 8. Measured excitation – chopped wave (CF)

Figure 9. Comparison of measured and simulated response for the chopped wave 
excitation (CF)

Fig. 10. Measured excitation – chopped wave (CT)

Fig. 11. Comparison of measured and simulated response for the chopped wave 
excitation (CT)
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Figure 5. Measured excitation – full wave 
 
 

 
Figure 6. Simulated response – full wave 
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Figure 7. Comparison of measured and simulated response for the full wave excitation 

 
 

5.2. Lightning impulse chopped on the front (LI-CF) 
 

The second set of time-domain measurements was performed using the lightning 
impulse chopped on the front according to IEC 60060-1. All settings were the same as in (A), 
except the sample interval of the oscilloscope, which was 4 ns. Fig. 8 depicts the measured 
input voltage, while Fig. 9 gives the comparison of the simulated and measured response in 
the time-domain. The simulated time-domain response is shifted “in left” for 5 samples, to 
compensate the modeling delay.  
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Figure 8. Measured excitation – chopped wave (CF) 

 
Figure 9. Comparison of measured and simulated response for the chopped wave excitation 

(CF) 
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Figure 8. Measured excitation – chopped wave (CF) 

 
Figure 9. Comparison of measured and simulated response for the chopped wave excitation 

(CF) 
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Fig. 10. Measured excitation – chopped wave (CT) 

 

 
Fig. 11. Comparison of measured and simulated response for the chopped wave excitation 

(CT) 
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Fig. 10. Measured excitation – chopped wave (CT) 

 

 
Fig. 11. Comparison of measured and simulated response for the chopped wave excitation 

(CT) 
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Lightning impulse chopped on the tail (LI-CT)

The third set of time-domain measurements was performed using the 
lightning impulse chopped on the tail according to IEC 60060-1, with 
chopping time of around 5 μs. All settings were the same as in (A), ex-
cept the sample interval of the oscilloscope, which was 0.8 ns. Fig. 10 
depicts the measured input voltage, while Fig. 11 gives the comparison of 
the simulated and measured response in the time-domain. The simulated 
time-domain response is shifted “in left” for 5 samples, to compensate the 
modeling delay.

FIlter Order Selection
With the increase of the filter order, a better fit of the model and the mea-
surements is achieved. As the trade-off between complexity of the model 
and the better fit to the data, different order-selection criteria can be appli-
ed. Several order selection criteria [23-30] can be systemized as generali-
zed information criterion (GIC). It can be approximated using the variance 
estimate 

   (16)

as

 (17)

where N denotes the number of samples in the data vector, m denotes the 
number of estimated parameters andis the penalty factor for the increase 
of the model size. The model order m is selected as the minimum of GIC 
for the proposed model orders between 0 and some maximum candidate.  
For finite values of N, the corrected Akaike criterion (AICc):

   (18)

is suitable for the order-selection, with a smaller risk of overfitting compa-
red to the Akaike criterion (AIC). AICc was already applied as the order-se-
lection criteria in the impulse response modeling of the voltage instrument 
transformers [31].

The example of order-selection based on AICc is performed using mo-
del orders spanning from 1 to 1598, where the variance estimate (16) is 
calculated as the Euclidean distance between measured and calculated 
frequency response, for the frequencies determined by the data set of the 
measurement. Here, N is the number of frequency samples in the mea-
surements. The adequate filter order according to AICc appeared to be 
LAICc=71. Fig. 12 depicts the comparison of the simulated and measured 
response in the time-domain for the lightning impulse chopped on the 
tail (LI-CT). The simulated time-domain response is shifted “in left” for 5 
samples, to compensate the modeling delay. The routine for calculation of 
AICc was programmed in MATLAB by the authors.

Figure 12. Comparison of measured and simulated response for the chopped wave 

excitation (CT) – filter order is selected according to AICc

Conclusions
 This paper describes a novel approach in the modeling of transformers, 
suitable for time-domain simulation of their response during the fast tran-
sients. On the basis of the frequency-domain measurements using a low-
frequency network analyzer with the gain-phase test port, the z-domain, 
finite impulse response (FIR) model of the system function is built. The 
proposed technique is based on Wiener filtering and the frequency domain 
approach in the system identification. Since the proposed technique appli-
es finite impulse response filtering, the z-domain model of the transformer 
is absolutely stable. Such a model, being a digital FIR filter, allows easy 
computation of the response of the system to various exciting voltages 
without a need for the measurements in the time-domain to be perfor-
med again for each transient excitation. Furthermore, Wiener modeling 
of the system function allows unequal spacing of the frequency samples. 
This gives the possibility of greater accuracy of the modeling in the frequ-
ency range where the magnitude or phase response of the system varies 
greatly. The linearity of the transformer is confirmed applying the Fourier 
analysis and different waveforms of the primary voltage, and methods for 
the model order selection, based on the generalized information criterion 
are discussed and applied. The theoretical analysis is confirmed with mea-
surements in time domain, using the recurrent surge generator, and a very 
good matching is achieved between the simulated and measured time-
domain responses for several different transient excitations.
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5.3. Lightning impulse chopped on the tail (LI-CT) 
 

The third set of time-domain measurements was performed using the lightning 
impulse chopped on the tail according to IEC 60060-1, with chopping time of around 5 μs. All 
settings were the same as in (A), except the sample interval of the oscilloscope, which was 0.8 
ns. Fig. 10 depicts the measured input voltage, while Fig. 11 gives the comparison of the 
simulated and measured response in the time-domain. The simulated time-domain response 
is shifted “in left” for 5 samples, to compensate the modeling delay. 
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where N denotes the number of samples in the data vector, m denotes the number of 
estimated parameters and is the penalty factor for the increase of the model size. The model 
order m is selected as the minimum of GIC for the proposed model orders between 0 and some 
maximum candidate.  For finite values of N, the corrected Akaike criterion (AICc): 
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is suitable for the order-selection, with a smaller risk of overfitting compared to the Akaike 
criterion (AIC). AICc was already applied as the order-selection criteria in the impulse 
response modeling of the voltage instrument transformers 31. 
The example of order-selection based on AICc is performed using model orders spanning from 
1 to 1598, where the variance estimate (16) is calculated as the Euclidean distance between 
measured and calculated frequency response, for the frequencies determined by the data set 
of the measurement. Here, N is the number of frequency samples in the measurements. The 
adequate filter order according to AICc appeared to be LAICc=71. Fig. 12 depicts the 
comparison of the simulated and measured response in the time-domain for the lightning 
impulse chopped on the tail (LI-CT). The simulated time-domain response is shifted “in left” 
for 5 samples, to compensate the modeling delay. The routine for calculation of AICc was 
programmed in MATLAB by the authors. 
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This paper describes a novel approach in the modeling of transformers, suitable for 
time-domain simulation of their response during the fast transients. On the basis of the 
frequency-domain measurements using a low-frequency network analyzer with the gain-
phase test port, the z-domain, finite impulse response (FIR) model of the system function is 
built. The proposed technique is based on Wiener filtering and the frequency domain 
approach in the system identification. Since the proposed technique applies finite impulse 
response filtering, the z-domain model of the transformer is absolutely stable. Such a model, 
being a digital FIR filter, allows easy computation of the response of the system to various 
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accuracy of the modeling in the frequency range where the magnitude or phase response of 
the system varies greatly. The linearity of the transformer is confirmed applying the Fourier 
analysis and different waveforms of the primary voltage, and methods for the model order 
selection, based on the generalized information criterion are discussed and applied. The 
theoretical analysis is confirmed with measurements in time domain, using the recurrent 
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