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Comparative Analysis of Metaheuristic Algorithms for 
Parameters Estimation of Single-Cage and Double-

Cage Induction Machine Models
Mihailo Micev, Martin Ćalasan, Miljan Janketić 

Summary — This paper deals with the estimation of parameters 
of single-cage and double-cage induction machine models using HBA 
(Honey Badger Algorithm) and EO (Equilbrium Optimizer) algo-
rithms. The input data for the estimation procedure are the induction 
machine nameplate data – power factor, starting, rated, and maxi-
mum torque. Based on the nameplate data, the criterion function is 
defined. The applicability of both considered methods is proven by 
comparing the output characteristics of induction machine determi-
ned using parameters estimated with other literature known algo-
rithm. The obtained results demonstrate that the applied algorithm 
is very efficient, accurate, and precise method for the parameters 
estimation of single-cage and double-cage induction machine models.

Keywords — induction machine, estimation, parameters, metahe-
uristic algorithms. 

I. Introduction

Induction machine (IM) is the most common type of alterna-
ting current (AC) electric machine. The main characteristic of this 
machine type is that the rotor speed and the speed of stator’s rota-
ting magnetic field are not equal. Due to the fact that IMs cannot 
produce reactive power, they are mainly used as a motor. 

The proper functioning of an IM is very important for every 
electrical drive, device or application in which the IM is used. In 
order to provide reliable and efficient operating of an IM, it is very 
important to know the parameters of the machine, as well as the 
current, torque, and other electrical and mechanical characteristics. 
The operation of an IM is defined with its’ equivalent circuit and 
the values of the parameters. According to that, it is obvious that 
the determination of IM’s parameters provides insight into the con-
dition of the machine and the expected level of its’ performances 
[1]. Classic method for IM’s parameters estimation is based on the 
short-circuit and open-circuit tests, as described in IEEE and IEC 

standards [2], [3]. However, since there is practical need to esti-
mate the parameters of IM during the normal operation mode, it is 
evident that the standard short-circuit and open-circuit tests are not 
applicable. Therefore, the authors in the available literature tend to 
develop the methods for estimation of IM’s parameters which do 
not require the disconnection of the machine from the load. Gene-
rally, the developed methods for the estimation of IM parameters 
can be divided into two main categories. The first category com-
prises methods that rely on the IM’s nameplate data, such as rated 
torque and slip, as well as starting and maximum torque [4] – [6]. 
On the other side, the second category of estimation methods relies 
on measuring the data during the normal operation mode of the 
machine [7] – [12]. To be more precise, the methods based on the 
analysis of the machine’s acceleration are presented in [7] and [8]. 
The direct start of the induction machine represents the basic for 
the test method proposed in [9], while the U/f regulation is con-
sidered in [10]. The parameters of the IM are determined while 
operating in generator mode in [11]. Also, the impulse response 
of an IM is used for the parameters estimation procedure in [12].

This paper presents the comparative analysis between HBA 
[13] and EO [14] algorithms for estimation of parameters of sin-
gle cage induction machine (SCIM) and double cage induction 
machine (DCIM) models. The parameters are estimated using 
the nameplate data. Also, the comparison with SA-ERWCA algo-
rithm, used in [6], is provided.

The paper is organized as follows. In Section 2, both single 
cage and double cage induction machine models are described in 
details, along with the presentation of corresponding equivalent 
circuits. Considered metaheuristic algorithms are described in 
Section 3. The results of the estimation procedure, along with the 
comparative analysis, are presented in Section 4.

II. Single Cage and Double Cage Induction 
Machine Models

In this section, two basic models of induction machine are pre-
sented – single cage and double cage models. Also, equivalent cir-
cuits and corresponding mathematical equations will be analyzed.

A. Single cage model (SCM) of induction machine

The equivalent circuit of the single cage induction machine 
model is depicted in Fig. 1. The resistances of stator and rotor are 
denoted with R1 and R2, X1 and X2 stand for reactances of stator 
and rotor, respectively, Xm is magnetization reactance, and s is slip.
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Fig. 1. Equivalent circuit of single cage induction machine model.

Based on the presented equivalent circuit, firstly the equiva-
lent impedance of rotor circuit and magnetization branch Zp is 
determined:
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Therefore, the stator current I can be determined as follows:
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Knowing the stator current, the rotor’s current I2 can be easily 
determined:
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Based on that, the electromagnetic torque of the motor can be 
calculated using the following equation:
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where p stands for the number of pole pairs of the machine, 
and ωs is the synchronous speed. Starting torque, denoted as Ts, can 
be easily determined by including s=1 in (4). In order to determine 
the maximum value of torque Tmax, the first step is to differentiate 
torque expression with respect to slip s, and to set the first deriva-
tive to be equal to 0:
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The solution of (5) is the value of slip smax that corresponds to 
maximum torque:
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where RTH and XTH correspond to resistance and reactance of 
the equivalent Thevenin circuit of single cage induction machine 
model:
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Thevenin voltage VTH is calculated as follows:
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Finally, expressions for torque and maximum torque are obta-
ined as follows:
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B. Double Cage model (DCM) of Induction 
Machine

The equivalent circuit of the induction machine double cage 
model is given in Fig. 2.
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Fig. 2. Equivalent circuit of double cage induction machine model.

In the presented equivalent circuit, R11 and R22 represent the 
resistances of the first and second cage, while X1d and X2d stand 
for the reactances of the first and second rotor cage, respectively. 
Therefore, the stator current can be calculated as follows:
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where the equivalent impedance of parallel branches Zp is cal-
culated using the following equation:
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Based on the value of stator current, the currents I1 and I2 of the 
first and second rotor cages, respectively, are obtained:
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Afterward, the machine torque can be easily calculated:
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Similar to the approach presented within SCM analysis, the 
starting torque can be obtained by substituting s=1 in (13). Also, 
the value of slip smax that corresponds to maximum torque is obtai-
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ned by solving (5). After determining smax, maximum torque Tmax is 
obtained by substituting s=smax in (13).

III. Description of Applied Metaheuristic
Algorithms

In this section, the description and basic mathematical equati-
ons for two metaheuristic algorithms – HBA and EO algorithms-
are provided.

A. Honey Badger Algorithm (HBA)
The honey badger algorithm is based on the social behavior of 

honey badgers, precisely on the search and locating of the food.
From mathematical aspect, each badger is represented with vector
xi=[xi1, xi2,…, xiD], where xi is position of i-th badger, and i counts
from 1 to N (N-population size). Also, D denotes the dimension of
the optimization problem, or the number of variables that are being 
optimized. First step in the algorithm is to randomly initialize the 
position of each honey badger between the lower and upper boun-
ds of the optimization variable:

( ), ; 1, 2,..., ; 1, 2,..., ,= + ⋅ − = =i j j j jx LB rand UB LB i N j D  	

 
 

 – according to [13], it is selected to be 6. 
The other factors mentioned in (15), are defined as follows:  

•	 Ii is smell intensity of the prey:

• S is strength source:

• di is distance between prey and i-th badger:

• α is density factor:

• F is flag, defined as follows:

The inspiration for equilibrium optimizer (EO) algorithm is 
found in the law related tothe mass balance, which is frequently 
mentioned in chemistry and physics. Similar to the previously des-
cribed HBA, the population of EO algorithm is presented as the 
population of N particles. The concentration of i-th particle, deno-
ted as Ci, represents a potential solution of the optimization pro-
blem, and is presented as vector of D variables. The first step of the 
algorithm is to randomly initialize the population, which is carried 
out using (14). Afterward, the iteration procedure begins, and it is 
carried out until maximum number of iterations tmax is reached. In 
each iterations, the concentration of every particle is updated as 

The explanation of each term from previous equation is given 
as follows:

• The third term is called generation rate, and is denoted as
the vector G. It can be calculated as follows:

In (23) and (24), a1 and a2 stand for random numbers between 0 
and 1, while r, r1 and r2 are vectors of random numbers also in ran-
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Based on the value of stator current, the currents I1 and I2 of 
the first and second rotor cages, respectively, are obtained:
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Afterward, the machine torque can be easily calculated:
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Similar to the approach presented within SCM analysis, the 
starting torque can be obtained by substituting s=1 in (13).
Also, the value of slip smax that corresponds to maximum
torque is obtained by solving (5). After determining smax, 
maximum torque Tmax is obtained by substituting s=smax in
(13).

III. DESCRIPTION OF APPLIED METAHEURISTIC ALGORITHMS

In this section, the description and basic mathematical
equations for two metaheuristic algorithms – HBA and EO
algorithms-are provided.

A. Honey badger algorithm (HBA)
The honey badger algorithm is based on the social behavior of

honey badgers, precisely on the search and locating of the food.
From mathematical aspect, each badger is represented with vector
xi=[xi1, xi2,…, xiD], where xi is position of i-th badger, and i counts
from 1 to N (N-population size). Also, D denotes the dimension 
of the optimization problem, or the number of variables that are
being optimized. First step in the algorithm is to randomly 
initialize the position of each honey badger between the lower
and upper bounds of the optimization variable:

( ), ; 1, 2,..., ; 1, 2,..., ,= + ⋅ − = =i j j j jx LB rand UB LB i N j D  (14) 
where rand stands for a random number between 0 and 1,
while LBj and UBj are the lower and upper bound of j-th
optimization variable, respectively. The main equations that
iteratively repeat in the HBA algorithm are the digging phase
and the honey phase. These equations are used to update the
positions of the honey badgers.

The digging phase is expressed as follows:
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where xnew stands for the updated position of each honey
badger, xprey is the best badger so far (the one with the lowest
criterion function value); r3, r4, and r5 are random numbers in
range from 0 to 1, and β is the ability of the badger to get food 
– according to [13], it is selected to be 6. The other factors
mentioned in (15), are defined as follows:

• Ii is smell intensity of the prey:
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In previous equations, r2 and r6 are random numbers between 0
and 1, while t and tmax stand for current and maximum number of
iterations, respectively.

After completing digging phase, the following step in HBA is
honey phase. It is described using (21):

(21) 
The de until the

algorithm reaches predefined maximum number of iterations tmax. 
After completing the last iterations, the solution of the
optimization problem is the honey badger with the lowest 
criterion function value.

B. Equilibrium optimizer (EO) algorithm
The inspiration for equilibrium optimizer (EO) algorithm is

found in the law related tothe mass balance, which is frequently
mentioned in chemistry and physics. Similar to the previously 
described HBA, the population of EO algorithm is presented as
the population of N particles. The concentration of i-th particle,
denoted as Ci, represents a potential solution of the optimization 
problem, and is presented as vector of D variables. The first step
of the algorithm is to randomly initialize the population, which is
carried out using (14). Afterward, the iteration procedure begins,
and it is carried out until maximum number of iterations tmax is 
reached. In each iterations, the concentration of every particle is
updated as follows:
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The explanation of each term from previous equation is given
as follows:

• Randomly chosen particle from equilibrium pool is
denoted as Ceq. The equilibrium pool is formed once
after each iteration – it consists of four best particles
of the population, and of the their average value.

• The exponential term is denoted as F. Taking into
account that λ (turnover rate) represents vector of 
random numbers in the range from 0 to 1, the
exponential term can be calculated as follows: 4 
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• The third term is called generation rate, and is
denoted as the vector G. It can be calculated as
follows:
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In (23) and (24), a1 and a2 stand for random numbers between 
0 and 1, while r, r1 and r2 are vectors of random numbers also in 
range from 0 to 1. Also, GP stands for generation probability,
whose value is set to 0.5, according to [14].

After reaching the maximum number of iterations tmax, the 
particle whose concentration has the lowest fitness function value
is considered as the optimal solution.

IV. RESULTS OF THE OPTIMIZATION

In this section, the formulation of the optimization problem is
firstly described. Afterward, the results of the parameters
estimation procedure for SCM and DCM of two different
induction machines are presented.

A. Formulation of the optimization problem
The most important step in application of metaheuristic

algorithms is to define criterion function (CF). The goal of this
paper is to estimate the parameters of the induction machine,
so that the calculated values of torques, currents, and power
factor match with the values from the nameplate of the 
machine. To be more precise, the criterion functions used in
this work are given with the following equations:
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where functions F1-F6 are defined as follows:
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In the previously defined criterion function, index fl stands
for full load, st denotes starting, max is maximum, and also c
and n stand for calculated and nameplate value, respectively.
Also, CF1 is criterion function for single cage model, while
CF2 denotes criterion function for double cage model.

B. Case 1 – Estimation of parameters of SCM of the machine
Firstly, the parameters of the single cage model equivalent

circuit of induction motor are estimated. The nameplate data 
of the considered motor are given in Table 1.

TABLE I
INDUCTION MOTOR 1 – NAMEPLATE DATA

The parameters of the SCM equivalent circuit of the 
presented induction motor (R1, R2, X1, X2, and Xm) are 
estimated using HBA and EO algorithms. The results are
compared with the corresponding results obtained with SA-
ERWCA algorithm [6]. The results of the estimation, along
with the criterion function values, are given in Table 2.

TABLE II
INDUCTION MOTOR 1 – RESULTS OF THE ESTIMATION

Furthermore, the graphical comparison of the obtained
results is provided. Namely, the torque-slip and power factor-
slip characteristics are calculated using the parameters from
the previous table. The mutual comparison of the calculated
characteristics is presented in Fig. 3 (torque-slip) and Fig. 4
(power factor-slip). Also, the nameplate values of torque and
power factor are drawn on the corresponding figures.

Fig. 3. Comparison of torque-slip characteristics for single
cage model.

Fig. 4. Comparison of power factor-slip characteristics of
single cage model.
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In previous equations, r2 and r6 are random numbers between 0 
and 1, while t and tmax stand for current and maximum number of 
iterations, respectively. 

After completing digging phase, the following step in HBA is 
honey phase. It is described using (21): 𝐱௡௘௪ = 𝐱௣௥௘௬ + 𝐹 ⋅ 𝑟଻ ⋅ 𝛼 ⋅ 𝐝௜ .  (21) 

The described procedure is iteratively repeated until the 
algorithm reaches predefined maximum number of iterations tmax. 
After completing the last iterations, the solution of the 
optimization problem is the honey badger with the lowest 
criterion function value. 

B. Equilibrium optimizer (EO) algorithm
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where rand stands for a random number between 0 and 1, 
while LBj and UBj are the lower and upper bound of j-th 
optimization variable, respectively. The main equations that 
iteratively repeat in the HBA algorithm are the digging phase 
and the honey phase. These equations are used to update the 
positions of the honey badgers. 
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criterion function value); r3, r4, and r5 are random numbers in 
range from 0 to 1, and β  is the ability of the badger to get food 
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• Randomly  chosen particle from equilibrium pool is
denoted as Ceq. The equilibrium pool is formed once
after each iteration – it consists of four best particles
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ge from 0 to 1. Also, GP stands for generation probability, whose 
value is set to 0.5, according to [14].

After reaching the maximum number of iterations tmax, the par-
ticle whose concentration has the lowest fitness function value is 
considered as the optimal solution.

IV. Results of the Optimization
In this section, the formulation of the optimization problem 

is firstly described. Afterward, the results of the parameters esti-
mation procedure for SCM and DCM of two different induction 
machines are presented.

A. Formulation of the optimization problem
The most important step in application of metaheuristic algo-

rithms is to define criterion function (CF). The goal of this paper 
is to estimate the parameters of the induction machine, so that the 
calculated values of torques, currents, and power factor match with 
the values from the nameplate of the machine. To be more pre-
cise, the criterion functions used in this work are given with the 
following equations:
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In the previously defined criterion function, index fl stands for 
full load, st denotes starting, max is maximum, and also c and n 
stand for calculated and nameplate value, respectively. Also, CF1 
is criterion function for single cage model, while CF2 denotes cri-
terion function for double cage model.

B. Case 1 – Estimation of Parameters of SCM of 
the Machine

Firstly, the parameters of the single cage model equivalent cir-
cuit of induction motor are estimated. The nameplate data of the 
considered motor are given in Table 1.

TABLE I. 
Induction Motor 1 – Nameplate Data

The parameters of the SCM equivalent circuit of the presented 
induction motor (R1, R2, X1, X2, and Xm) are estimated using HBA 
and EO algorithms. The results are compared with the correspon-
ding results obtained with SA-ERWCA algorithm [6]. The results 
of the estimation, along with the criterion function values, are gi-
ven in Table 2.

TABLE II. 
Induction Motor 1 – Results of the Estimation

Furthermore, the graphical comparison of the obtained re-
sultsis provided. Namely, the torque-slip and power factor-slip 
characteristics are calculated using the parameters from the previo-
us table. The mutual comparison of the calculated characteristics 
is presented in Fig. 3 (torque-slip) and Fig. 4 (power factor-slip). 
Also, the nameplate values of torque and power factor are drawn 
on the corresponding figures.

Fig. 3. Comparison of torque-slip characteristics for single cage model.

Fig. 4. Comparison of power factor-slip characteristics of single cage 
model.

Based on the results presented in Table 2, as well as the graphi-
cal comparison given in previous figures, it is evident that both 
HBA and EO algorithms can ensure better matching than the SA-
ERWCA algorithm. Also, mutual comparison between HBA and 
EO algorithms shows that HBA algorithm provides slightly less 
criterion function value than EO algorithm.

C. Case 2 – Estimation of Parameters of DCM of 
the Machine

The parameters of the double cage equivalent circuit of the in-
duction motor are estimated in the second case presented in this 
paper. The nameplate data of the considered motor are given in 
Table 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Slip

0

100

200

300

400

To
rq

ue
 [N

m
]

HBA
EO

SA-ERWCA
Nameplate data

0.369 0.37 0.371 0.372 0.373 0.374 0.375 0.376

Slip

369.99

369.992

369.994

369.996

369.998

370

370.002

370.004

370.006

M
om

en
t [

N
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Slip

0

0.2

0.4

0.6

0.8

1

Po
w

er
 fa

ct
or

HBA
EO
SA-ERWCA
Nameplate data

0.089998 0.0899985 0.089999 0.0899995 0.09 0.0900005 0.090001 0.0900015 0.090002 0.0900025 0.090003

Slip

0.799998

0.7999985

0.799999

0.7999995

0.8

0.8000005

0.800001

0.8000015

0.800002

0.8000025

0.800003

(25)

(26)

Mihailo Micev, Martin Ćalasan, Miljan Janketić, Comparative Analysis of Metaheuristic Algorithms for Parameters Estimation of Single-Cage and Double-Cage 
Induction Machine Models, Journal of Energy, vol. 74 Number 4 (2025), 41–46 
https://doi.org/10.37798/2025743718   
© 2025 Copyright for this paper by authors. Use permitted under Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License



45

Table III 
Induction motor 2 – nameplate data

Considered EO and HBA algorithms are applied to estimate 
the parameters of the double cage model equivalent circuit – R1, 
X1, R11, X1d, R22, X2d, and Xm. Table 4 presents the comparison of 
obtained results with corresponding results from [6], where SA-
ERWCA algorithm is applied.

Table IV. 
Induction Motor 2 – Results of the Estimation

Similar to the previously presented approach, the graphical 
comparison of the obtained results is also provided. To be precise, 
Fig. 5 presents the comparison of torque-slip characteristics, which 
are calculated using the parameters from the previous table. Also, 
the power factor-slip characteristics are presented in Fig. 6.

Fig. 5. Comparison of torque-slip characteristics for double cage model.

Fig. 6. Comparison of power factor-slip characteristics of double cage 
model.

As it can be seen from the previous figures, the characteristics 
calculated with parameters estimated with HBA have the best 
matching with the nameplate data. Very close matching is also pro-
vided with EO algorithm, while the application of SA-ERWCA 
algorithm leads to the results that are further from nameplata data 
compared with other two considered algorithms. The same conclu-
sion can also be drawn observing the criterion function values from 
Table 4.

D. Convergence Curves Comparison
One of the main characteristics of each metaheuristic algorithm 

is its’ convergence curve, which denotes the criterion function va-
lue after each iteration. Therefore, the convergence curves for the 
algorithms applied in this paper are presented, in both considered 
cases.

In case 1, where the SCM equivalent circuit parameters are 
estimated, the parameters of both HBA and EO algorithm are se-
lected to have equal values. Precisely, maximum number of itera-
tions is 100, and the population size is also 100. The convergence 
curves comparison is depicted in Fig. 7.

Fig. 7. Comparison of convergence curves – case 1.

In the second considered case, the parameters of DCM equiva-
lent circuit are estimated. Population size and maximum number 
of iterations, for both HBA and EO algorithm, are selected to be 
300 in this case. The graphical comparison of convergence curves 
is provided in case 2.

Fig. 8. Comparison of convergence curves – case 2.

The analysis of the presented convergence curves, in both of 
the considered cases, clearly proves the applicability of both HBA 
and EO algorithm for the estimation of IM equivalent circuits pa-
rameters. Both of the algorithms reach optimal solution really fast, 
after only a couple of iterations. Mutual comparison gives slight 
advantage to the HBA, because it reaches optimal solution before 
the EO algorithm.

V. Conclusion
This paper presented a comparative analysis of the Honey 

Badger Algorithm and Equilibrium Optimizer for the estimation 
of parameters of single-cage and double-cage induction machine 
models using nameplate data. The obtained results clearly demon-
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strate that both algorithms provide high accuracy and fast conver-
gence, with HBA showing a slight advantage in terms of conver-
gence speed and criterion function value in all considered cases. 
The comparison with a previously published SA-ERWCA-based 
approach further confirms the effectiveness and robustness of the 
proposed methods for practical parameter estimation of induction 
machines.

Future work will be focused on extending the proposed met-
hodology to include parameter estimation based on measured 
operational data, as well as the application of hybrid and adaptive 
metaheuristic algorithms. Additionally, the integration of the pro-
posed estimation framework into real-time monitoring and control 
systems, as well as its validation on a wider range of induction 
machine ratings and operating conditions, will be considered.
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