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Comparative Analysis of Metaheuristic Algorithms for
Parameters Estimation of Single-Cage and Double-
Cage Induction Machine Models

Mihailo Micev, Martin Calasan, Miljan Janketi¢

Summary — This paper deals with the estimation of parameters
of single-cage and double-cage induction machine models using HBA
(Honey Badger Algorithm) and EO (Equilbrium Optimizer) algo-
rithms. The input data for the estimation procedure are the induction
machine nameplate data — power factor, starting, rated, and maxi-
mum torque. Based on the nameplate data, the criterion function is
defined. The applicability of both considered methods is proven by
comparing the output characteristics of induction machine determi-
ned using parameters estimated with other literature known algo-
rithm. The obtained results demonstrate that the applied algorithm
is very efficient, accurate, and precise method for the parameters
estimation of single-cage and double-cage induction machine models.

Keywords — induction machine, estimation, parameters, metahe-
uristic algorithms.

[. INTRODUCTION

[NDUCTION machine (IM) is the most common type of alterna-
ting current (AC) electric machine. The main characteristic of this
machine type is that the rotor speed and the speed of stator’s rota-
ting magnetic field are not equal. Due to the fact that IMs cannot
produce reactive power, they are mainly used as a motor.

The proper functioning of an IM is very important for every
electrical drive, device or application in which the IM is used. In
order to provide reliable and efficient operating of an IM, it is very
important to know the parameters of the machine, as well as the
current, torque, and other electrical and mechanical characteristics.
The operation of an IM is defined with its’ equivalent circuit and
the values of the parameters. According to that, it is obvious that
the determination of IM’s parameters provides insight into the con-
dition of the machine and the expected level of its’ performances
[1]. Classic method for IM’s parameters estimation is based on the
short-circuit and open-circuit tests, as described in IEEE and IEC
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standards [2], [3]. However, since there is practical need to esti-
mate the parameters of IM during the normal operation mode, it is
evident that the standard short-circuit and open-circuit tests are not
applicable. Therefore, the authors in the available literature tend to
develop the methods for estimation of IM’s parameters which do
not require the disconnection of the machine from the load. Gene-
rally, the developed methods for the estimation of IM parameters
can be divided into two main categories. The first category com-
prises methods that rely on the IM’s nameplate data, such as rated
torque and slip, as well as starting and maximum torque [4] — [6].
On the other side, the second category of estimation methods relies
on measuring the data during the normal operation mode of the
machine [7] — [12]. To be more precise, the methods based on the
analysis of the machine’s acceleration are presented in [7] and [8].
The direct start of the induction machine represents the basic for
the test method proposed in [9], while the U/f regulation is con-
sidered in [10]. The parameters of the IM are determined while
operating in generator mode in [11]. Also, the impulse response
of an IM is used for the parameters estimation procedure in [12].

This paper presents the comparative analysis between HBA
[13] and EO [14] algorithms for estimation of parameters of sin-
gle cage induction machine (SCIM) and double cage induction
machine (DCIM) models. The parameters are estimated using
the nameplate data. Also, the comparison with SA-ERWCA algo-
rithm, used in [6], is provided.

The paper is organized as follows. In Section 2, both single
cage and double cage induction machine models are described in
details, along with the presentation of corresponding equivalent
circuits. Considered metaheuristic algorithms are described in
Section 3. The results of the estimation procedure, along with the
comparative analysis, are presented in Section 4.

II. SINGLE CAGE AND DOUBLE CAGE INDUCTION
MACHINE MODELS

In this section, two basic models of induction machine are pre-
sented — single cage and double cage models. Also, equivalent cir-
cuits and corresponding mathematical equations will be analyzed.

A. Single cage model (SCM) of induction machine

The equivalent circuit of the single cage induction machine
model is depicted in Fig. 1. The resistances of stator and rotor are
denoted with R, and R,, X, and X, stand for reactances of stator
and rotor, respectively, X is magnetization reactance, and s is slip.
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Fig. 1. Equivalent circuit of single cage induction machine model.

Based on the presented equivalent circuit, firstly the equiva—
lent impedance of rotor circuit and magnetization branch Z, is
determined:
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Therefore, the stator current / can be determined as follows:

L= @

U
R+jX +Z,

Knowing the stator current, the rotor’s current 7, can be easily
determined:
Z, 1L
L= (€)
2 .
—+JjX,
s
Based on that, the electromagnetic torque of the motor can be
calculated using the following equation:

32 p L )
(O

T= =2,
N

L[

where p stands for the number of pole pairs of the machine,
and o_is the synchronous speed. Startmg torque, denoted as 7, can
be easﬂy determined by including s=1 in (4). In order to determine
the maximum value of torque 7, the first step is to differentiate
torque expression with respect to shp s, and to set the first deriva-
tive to be equal to 0:

ar _, ®)
ds

The solution of (5) is the value of slip s, _that corresponds to

maximum torque:

\/ RTH

where R, and X, correspond to resistance and reactance of
the equlvalent Thevemn circuit of single cage induction machine
model:

RZ
(X + X, ©)
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Thevenin voltage ¥, is calculated as follows:

Finally, expressions for torque and maximum torque are obta-
ined as follows:
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B. DouBLE CAGE MODEL (DCM) oF INDUCTION
MACHINE

The equivalent circuit of the induction machine double cage
model is given in Fig. 2.
] R1 X1
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l de l XZd

Ryi/s Ryls

Fig. 2. Equivalent circuit of double cage induction machine model.

In the presented equivalent circuit, R, and R,, represent the
resistances of the first and second cage, while X, and X, stand
for the reactances of the first and second rotor cage, respectively.
Therefore, the stator current can be calculated as follows:

-

1= (10)

R+jX +Z,

where the equivalent impedance of parallel branches A is cal-
culated using the following equation:
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Based on the value of stator current, the currents /, and , of the
first and second rotor cages, respectively, are obtained:

2,1
= Rll ] ’
TJFJXM
Z -1 (12)
[ =——2—
= R22 . ’
T"']de

Afterward, the machine torque can be easily calculated:

T= (|1|2 SIS %} (13)

Z, ®) Similar to the approach presented within SCM analysis, the
Vi =U- —Z 7 starting torque can be obtained by substituting s=1 in (13). Also,
=t =e the value of slip s _that corresponds to maximum torque is obtai-
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ned by solving (5). After determmmg s
obtained by substituting s=s,__in (13).

» maximum torque 7 _is

max

III. DESCRIPTION OF APPLIED METAHEURISTIC
ALGORITHMS

In this section, the description and basic mathematical equati-
ons for two metaheuristic algorithms — HBA and EO algorithms-
are provided.

A. HONEY BADGER ALGORITHM (HBA)

The honey badger algorithm is based on the social behavior of
honey badgers, precisely on the search and locating of the food.
From mathematical aspect, each badger is represented with vector
x=[x,, X,..., X,,], where x, is position of i-th badger, and i counts
from 1 to N (N—populatlon 51ze) Also, D denotes the dimension of
the optimization problem, or the number of variables that are being
optimized. First step in the algorithm is to randomly initialize the
position of each honey badger between the lower and upper boun-
ds of the optimization variable:

x,, = LB, +rand-(UB,~ LB, );i=1,2,...N:;j =1,2,...D, (14)

where rand stands for a random number between 0 and 1,
while LB; and UB; are the lower and upper bound of j-th
optimization variable, respectively. The main equations that
iteratively repeat in the HBA algorithm are the digging phase
and the honey phase. These equations are used to update the
positions of the honey badgers.
The digging phase is expressed as follows:

Xnew = Xprey +F -1+ Xppoy + F 13- - d; - [cos(2mr) - [1 — cos(2mrs)]|, (15)
where x,., stands for the updated position of each honey
badger, X, is the best badger so far (the one with the lowest
criterion function value); 73, 74, and rs are random numbers in
range from 0 to 1, and f is the ability of the badger to get food
— according to [13], it is selected to be 6.

The other factors mentioned in (15), are defined as follows:

e [ is smell intensity of the prey:

I =7 xi
e (16)
e  §is strength source:
S=(x- xm)z, 17)
e d is distance between prey and i-th badger:
di = xprey xi’ (18)
e  «is density factor
.t
azcm (19)

e  Fisflag, defined as follows:
_(1,ifrg £ 0.5
F= { 1, else (20)

In previous equations, 7, and s are random numbers between 0
and 1, while 7 and #max stand for current and maximum number of
iterations, respectively.

After completing digging phase, the following step in HBA is
honey phase. It is described using (21):

Xnew = Xprey T F 17 - - d;. 2n

The described procedure is iteratively repeated until the
algorithm reaches predefined maximum number of iterations #yq.
After completing the last iterations, the solution of the
optimization problem is the honey badger with the lowest
criterion function value.

B. Equilibrium optimizer (EO) algorithm

The inspiration for equilibrium optimizer (EO) algorithm is
found in the law related tothe mass balance, which is frequently
mentioned in chemistry and physics. Similar to the previously des-
cribed HBA, the population of EO algorithm is presented as the
population of N particles. The concentration of i-th particle, deno-
ted as C, represents a potential solution of the optimization pro-
blem, and is presented as vector of D variables. The first step of the
algorithm is to randomly initialize the population, which is carried
out using (14). Afterward, the iteration procedure begins, and it is
carried out until maximum number of iterations ¢, _is reached. In
each iterations, the concentration of every particle is updated as

C(n=cC,+(Ct-D-C,)F +%(1—F). (22)
The explanation of each term from previous equation is given
as follows:

e Randomly chosen particle from equilibrium pool is
denoted as C,;. The equilibrium pool is formed once
after each iteration — it consists of four best particles
of the population, and of the their average value.

e The exponential term is denoted as F. Taking into
account that A (turnover rate) represents vector of

random numbers in the range from 0 to 1, the
exponential term can be calculated as follows:
F = e—}.(x—xo)
_t
t “
=|1- , (23)
tmax

X, = %ln [—al “(1=e™)-sign(r— 0.5)] +x

e The third term is called generation rate, and is denoted as

the vector G. It can be calculated as follows:

G=G,(C,—iC(t-D)F,
0.5r, 1, > GP (24)
G = 0 .
, 1, <GP

In (23) and (24), a, and a, stand for random numbers between 0

and 1, while r, , and r, are vectors of random numbers also in ran-
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ge from 0 to 1. Also, GP stands for generation probability, whose
value is set to 0.5, according to [14].

After reaching the maximum number of iterations ¢, the par-
ticle whose concentration has the lowest fitness function value is
considered as the optimal solution.

IV. RESULTS OF THE OPTIMIZATION

In this section, the formulation of the optimization problem
is firstly described. Afterward, the results of the parameters esti-
mation procedure for SCM and DCM of two different induction
machines are presented.

A. FORMULATION OF THE OPTIMIZATION PROBLEM

The most important step in application of metaheuristic algo-
rithms is to define criterion function (CF). The goal of this paper
is to estimate the parameters of the induction machine, so that the
calculated values of torques, currents, and power factor match with
the values from the nameplate of the machine. To be more pre-
cise, the criterion functions used in this work are given with the
following equations:

CF =F +F +F +F7,

25
CF,=F}+F} +F} + F} + F} + Fp, 2

where functions £ \-F are defined as follows:

“Lan -F = ste st ‘F = Tmax,c _Tmax,n .
sty — T 243 = T )

M st,n max,n

F _ COS(¢))ﬂ,C _Cos(q))ﬂ,n ,F; — [st,r _[st,n ,F — ]ﬂ,z‘ _I/l,n )

! cos((p)ﬂm I,, ¥ I,

(26)

In the previously defined criterion function, index /7 stands for
full load, st denotes starting, max is maximum, and also ¢ and n
stand for calculated and nameplate value, respectively. Also, CF,
is criterion function for single cage model, while CF, denotes cri-
terion function for double cage model.

B. CASE 1 — ESTIMATION OF PARAMETERS oF SCM OF
THE MACHINE

Firstly, the parameters of the single cage model equivalent cir-
cuit of induction motor are estimated. The nameplate data of the
considered motor are given in Table 1.

TABLE 1.
INDUCTION MOTOR I — NAMEPLATE DATA

Quantity Description Value
P Nominal power 40 HP (horse power)
Va Nominal voltage 400V
I Frequency 50Hz
P Pole pairs 2
Ty Starting torque 260 Nm
Ta Full-load torque 190 Nm
Tnax Maximum torque 370 Nm
cos(@)n Full-load power factor 0.8
s Full-load slip 0.09

The parameters of the SCM equivalent circuit of the presented
induction motor (R, R,, X, X,, and X ) are estimated using HBA
and EO algorithms. The results are compared with the correspon-
ding results obtained with SA-ERWCA algorithm [6]. The results
of the estimation, along with the criterion function values, are gi-
ven in Table 2.

TABLE II.
INDUCTION MOTOR I — RESULTS OF THE ESTIMATION

Parameter HBA EO SA-ERWCA
R’ 0.27821 0.27821 0.27821
X 0.68056 0.16343 0.20111
Ry 0.34216 0.39167 0.38795
X2 0.25867 0.84936 0.80380
Xn 7.39873 7.91588 7.87820
CF 3.88-101 | 1.993-1013 1.6-1010

Furthermore, the graphical comparison of the obtained re-
sultsis provided. Namely, the torque-slip and power factor-slip
characteristics are calculated using the parameters from the previo-
us table. The mutual comparison of the calculated characteristics
is presented in Fig. 3 (torque-slip) and Fig. 4 (power factor-slip).
Also, the nameplate values of torque and power factor are drawn
on the corresponding figures.

400

hBA — 1 — .sa-ERwca
Nameplate data

T
———— EO *
300 | \ |

100

0 0.1 02 03 04 05 0.6 07 08 09 1

Slip

Fig. 3. Comparison of torque-slip characteristics for single cage model.

1

—— EO
— — — - SA-ERWCA
%  Nameplate data

er factor

Fig. 4. Comparison of power factor-slip characteristics of single cage
model.

Based on the results presented in Table 2, as well as the graphi-
cal comparison given in previous figures, it is evident that both
HBA and EO algorithms can ensure better matching than the SA-
ERWCA algorithm. Also, mutual comparison between HBA and
EO algorithms shows that HBA algorithm provides slightly less
criterion function value than EO algorithm.

C. CASE 2 — ESTIMATION OF PARAMETERS or DCM oF
THE MACHINE

The parameters of the double cage equivalent circuit of the in-
duction motor are estimated in the second case presented in this
paper. The nameplate data of the considered motor are given in
Table 3.
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TaBLE 11T

INDUCTION MOTOR 2 — NAMEPLATE DATA

Quantity Description Value
P Nominal power 148 HP (horse power)
Va Nominal voltage 400V
f Frequency 50Hz
p Pole pairs 2
Ty Starting torque 847.2 Nm
Ty Full-load torque 353 Nm

Tinax Maximum forque 1094.3 Nm
cos(p)s | Full-load power factor 0.9
sa Full-load slip 0.0077
I Starting current 15272 A
I Full-load current 184 A

Considered EO and HBA algorithms are applied to estimate
the parameters of the double cage model equivalent circuit — R,

X, R, X, R, X,,and X . Table 4 presents the comparison of
obtained results with corresponding results from [6], where SA-
ERWCA algorithm is applied.
TaBLE IV.
INDUCTION MOTOR 2 — RESULTS OF THE ESTIMATION
Parameter HBA EO SA-ERWCA

R 0.037748 0.0377021165 0.037614

X 0.03664 0.1113609818 0.050454

Ru 0.01077 0.01204092448 0.010833

Xia 0.171758 0.1114089951 0.159068

Ry 0.162733 0.0500786904 0.135273

Xoa 0.150063 0.003877696845 0.112364

X 3.779905 3.705739386 3.767293

CF 5.02-101 3.75-1010 4.73-10°

Similar to the previously presented approach, the graphical

comparison of the obtained results is also provided. To be precise,
Fig. 5 presents the comparison of torque-slip characteristics, which
are calculated using the parameters from the previous table. Also,
the power factor-slip characteristics are presented in Fig. 6.

1200

T T T
HBA — — —.SA-ERWCA
—ve————r EO ¢ Nameplate data

1000

800

T 60

Slip

Fig. 5. Comparison of torque-slip characteristics for double cage model.

. SA-ERWCA

| Nomeplaedan

Power factor

T I I I I I I
03 04 05 06 07 08 09 1

Slip

Fig. 6. Comparison of power factor-slip characteristics of double cage
model.

As it can be seen from the previous figures, the characteristics
calculated with parameters estimated with HBA have the best
matching with the nameplate data. Very close matching is also pro-
vided with EO algorithm, while the application of SA-ERWCA
algorithm leads to the results that are further from nameplata data
compared with other two considered algorithms. The same conclu-
sion can also be drawn observing the criterion function values from
Table 4.

D. CoNVERGENCE CURVES COMPARISON

One of the main characteristics of each metaheuristic algorithm
is its’ convergence curve, which denotes the criterion function va-
lue after each iteration. Therefore, the convergence curves for the
algorithms applied in this paper are presented, in both considered
cases.

In case 1, where the SCM equivalent circuit parameters are
estimated, the parameters of both HBA and EO algorithm are se-
lected to have equal values. Precisely, maximum number of itera-
tions is 100, and the population size is also 100. The convergence
curves comparison is depicted in Fig. 7.

0.02

HBA
-EO

0.015

30 40 50 60 70 80 90 100
Fig. 7. Comparison of convergence curves — case 1.

In the second considered case, the parameters of DCM equiva-
lent circuit are estimated. Population size and maximum number
of iterations, for both HBA and EO algorithm, are selected to be
300 in this case. The graphical comparison of convergence curves
is provided in case 2.

HBA
———-EO

Fig. 8. Comparison of convergence curves — case 2.

The analysis of the presented convergence curves, in both of
the considered cases, clearly proves the applicability of both HBA
and EO algorithm for the estimation of IM equivalent circuits pa-
rameters. Both of the algorithms reach optimal solution really fast,
after only a couple of iterations. Mutual comparison gives slight
advantage to the HBA, because it reaches optimal solution before
the EO algorithm.

V. CONCLUSION

This paper presented a comparative analysis of the Honey
Badger Algorithm and Equilibrium Optimizer for the estimation
of parameters of single-cage and double-cage induction machine
models using nameplate data. The obtained results clearly demon-
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strate that both algorithms provide high accuracy and fast conver-
gence, with HBA showing a slight advantage in terms of conver-
gence speed and criterion function value in all considered cases.
The comparison with a previously published SA-ERWCA-based
approach further confirms the effectiveness and robustness of the
proposed methods for practical parameter estimation of induction
machines.

Future work will be focused on extending the proposed met-
hodology to include parameter estimation based on measured
operational data, as well as the application of hybrid and adaptive
metaheuristic algorithms. Additionally, the integration of the pro-
posed estimation framework into real-time monitoring and control
systems, as well as its validation on a wider range of induction
machine ratings and operating conditions, will be considered.
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