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Accurate Photovoltaic Power Forecasting in 5G
Networks: A Novel Neural Network Approach

Mohammed Moyed Ahmed

Summary—This study addresses the challenge of integrating
photovoltaic (PV) power generation into SG base stations to reduce
energy consumption and promote sustainable energy integration in
telecommunications infrastructure. A novel Improved Firefly Algo-
rithm-Back Propagation (IFA-BP) neural network model is proposed
for enhanced PV power prediction accuracy and reliability. The met-
hodology combines Circle chaos mapping for optimized population
initialization with nonlinear mutational perturbation to strengthen
global search capabilities and improve convergence rates. Critical
input parameters are systematically selected through grey correla-
tion analysis to optimize model efficiency and reduce computational
overhead. Comprehensive comparative analysis with conventional
BP and FA-BP models is conducted using historical operational data
from 5G base station installations across varying weather conditions.
Experimental results demonstrate the model’s superior performan-
ce and statistical robustness, achieving a Mean Absolute Percentage
Error (MAPE) of 4.79 + 0.31% and coefficient of determination (R2)
of 0.9895 £ 0.0012 under sunny conditions, while maintaining excep-
tional weather adaptability with a MAPE of 12.20 £ 0.87% and R2
of 0.9793 + 0.0019 during cloudy weather. Statistical significance te-
sting confirms these improvements are not due to random variation
(p < 0.001). The proposed IFA-BP model demonstrates remarkable
resilience in challenging weather conditions and provides a robust
foundation for intelligent power management in next-generation wi-
reless networks. However, the current evaluation is limited to two-
day testing data and would benefit from extended validation across
diverse seasonal variations and broader environmental conditions to
establish comprehensive generalizability for practical deployment in
real-time power management systems.

Keywords —5G Base Station, Photovoltaic Power Prediction, Im-
proved Firefly Algorithm

[. INTRODUCTION

The advent of 5G communication networks has revo-
lutionized global connectivity with unprecedented data
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transmission capabilities, enabling enhanced mobile
broadband, ultra-reliable low-latency communications,
and massive machine-type communications [1]. However,
the extensive deployment of large-scale antenna arrays
and densified network infrastructure in 5G systems has
led to a significant increase in power consumption [2].
Compared to 4G networks, 5G requires a higher number
and density of base stations, resulting in energy consump-
tion levels nearly nine times higher. This substantial en-
ergy demand poses critical sustainability challenges, espe-
cially in the context of deteriorating ecological conditions
and depleting traditional energy sources [3]. The esca-
lating energy requirements of 5G networks present both
environmental and economic concerns. Base stations,
which account for approximately 70% of total network
energy consumption, have become focal points for imple-
menting energy-efficient s olutions [ 4]. To address these
sustainability concerns and reduce operational expenses,
integrating photovoltaic (PV) power generation into 5G
base stations has emerged as a promising solution [5].
This approach aligns with global initiatives for carbon
neutrality and sustainable development while potentially
reducing long-term operational costs of telecommunica-
tions infrastructure.

However, the inherent variability of PV power genera-
tion due to factors such as seasonal variations, day-night
cycles, geographical location, and dynamic weather con-
ditions presents significant challenges for network reliabil-
ity [6]. The fluctuating and intermittent nature of solar
energy resources necessitates accurate prediction of PV
output power to ensure safety, stability, and optimization
of base station power supply systems. Without precise
forecasting, the integration of renewable energy sources
may compromise network performance and quality of
service. PV power forecasting research can be broadly
categorized into direct and indirect prediction methods
[7]. Indirect methods typically involve a two-step process:
first predicting meteorological parameters (such as solar
irradiation and temperature), then calculating expected
PV output based on these predictions and PV system
characteristics. In contrast, direct prediction approaches
utilize historical PV output data and relevant meteoro-
logical variables to forecast photovoltaic power generation
directly. This paper focuses on the direct prediction ap-
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proach, which is preferred due to its simplicity, reduced
error propagation, and higher prediction accuracy com-
pared to the more complex indirect prediction process [8].

While significant progress has been made in PV power
prediction for general applications, existing research rarely
addresses PV power prediction specifically for 5G base
station power supply systems, which have unique load
characteristics and reliability requirements. Additionally,
current group optimization algorithms used in these pre-
dictions often suffer from local optima issues and prema-
ture convergence, reducing the accuracy and reliability
of PV power predictions under varying environmental
conditions [9].

To bridge these gaps, this paper proposes an Improved
Firefly Algorithm-Back Propagation (IFA-BP) neural net-
work model for predicting photovoltaic power generation
in 5G base stations. The proposed approach enhances the
standard Firefly Algorithm through Circle chaos mapping
for population initialization and nonlinear mutational per-
turbation to improve global search capability. Further-
more, we implement grey correlation analysis to identify
the most influential meteorological factors affecting PV
output, thereby optimizing the model’s input parameters.

II. RELATED RESEARCH

Recent advancements in communication technologies
and sustainable energy systems have paved the way for in-
novative solutions in powering next-generation networks.
Several studies have contributed to this field, approaching
the challenge from different perspectives.

A. Energy Management in Telecommunications

The integration of renewable energy sources into
telecommunications infrastructure has gained significant
attention in recent years. Liu et al. [2] proposed a deep
learning framework for optimizing energy consumption in
5G base stations, achieving up to 27% reduction in energy
usage through predictive load balancing and dynamic
resource allocation. Similarly, Wu et al. [3] investigated
hybrid energy systems combining solar, wind, and battery
storage for 5G networks, demonstrating improved relia-
bility and reduced carbon emissions compared to conven-
tional grid-powered solutions.

Chen et al. [5] explored the concept of the ”5G Energy
Internet,” examining how 5G technologies can facilitate
the integration of distributed energy resources while si-
multaneously benefiting from them. Their work highlights
the bidirectional relationship between 5G networks and
renewable energy systems, suggesting a symbiotic frame-
work for future telecommunications infrastructure.

B. Advanced Prediction Methods for Renewable Energy

Accurate prediction of renewable energy output is cru-
cial for effective integration into critical systems like
telecommunications networks. Modern approaches have
evolved to include various machine learning and deep

learning techniques. Guo et al. [20] developed a MEA-
Wavelet Elman Neural Network for PV power predic-
tion, demonstrating improved accuracy through wavelet
decomposition and multi-scale analysis. Wang et al. [16]
proposed an innovative approach using the traditional
Chinese ”24 Solar Terms” calendar combined with hybrid
AT models for long-term PV prediction, achieving remark-
able accuracy for seasonal forecasting.

Contemporary methods such as Long Short-Term Mem-
ory (LSTM) networks, Gated Recurrent Units (GRU),
Temporal Convolutional Networks (TCN), and ensem-
ble methods like XGBoost and LightGBM have shown
promising results in time series forecasting tasks. These
approaches offer advantages in capturing long-term de-
pendencies and complex patterns in meteorological data,
presenting opportunities for future comparative studies
with the proposed IFA-BP methodology.

Han [22] introduced a Grey-LSSVM (Least Squares
Support Vector Machine) model for PV prediction that
effectively captured nonlinear relationships between mete-
orological variables and power output. Gao [23] advanced
neural network techniques for short-term PV prediction
by incorporating meteorological pattern recognition and
temporal correlations, significantly reducing prediction
errors for horizons of 15 minutes to 24 hours.

C. Optimization Algorithms in Neural Network Training

The effectiveness of neural networks for prediction tasks
heavily depends on the optimization algorithms used for
training. Zhang and Hao [24] applied Fireworks-Optimized
BP Neural Networks for PV prediction, demonstrating
superior performance compared to standard BP and ge-
netic algorithm approaches. Zhang et al. [9] conducted
an in-depth convergence analysis of improved Firefly Al-
gorithms, providing theoretical foundations for their en-
hanced global search capabilities and resistance to local
optima.

Sun and Zheng [10] implemented a Chaotic Firefly Algo-
rithm for wireless sensor network clustering, showing how
chaos theory can significantly improve the diversity and
exploration capabilities of population-based optimization
algorithms. Ma [11] developed improved BP Neural Net-
work applications with modified learning rate strategies
and momentum terms, achieving faster convergence and
enhanced generalization for prediction tasks.

D. Communication and Energy Integration in Next-
Generation Networks

The convergence of communication systems and energy
management presents opportunities for holistic optimiza-
tion. Vehicle-to-Grid (V2G) technologies have been ex-
plored by Uribe-Pérez et al. [12], focusing on communi-
cation protocols and data management for bidirectional
energy exchange. Their work highlights potential applica-
tions for supporting 5G base stations during peak demand
or as complementary power sources to PV systems.
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Artificial Intelligence applications for next-generation
computing have been reviewed by Gill et al. [13], providing
insights into methodologies that could enhance energy pre-
diction and management systems for telecommunications
infrastructure. Alsabah et al. [14] presented a compre-
hensive survey on 6G wireless communications, including
technologies such as massive MIMO and terahertz com-
munications, highlighting the escalating energy challenges
that future networks will face.

Yan et al. [15] demonstrated the application of 5G tech-
nologies for fault diagnosis in distribution networks, illus-
trating how advanced communications can enhance the re-
liability and resilience of power systems. This bidirectional
relationship between energy and communication systems
underscores the importance of integrated approaches to
infrastructure development.

E. Intelligentization of Energy Systems

The application of intelligent technologies to energy
systems promises improved efficiency and reliability. Liang
et al. [17] investigated intelligentization in power industry
transformation through Chinese substation case studies,
providing insights into implementing advanced technolo-
gies for energy savings and operational efficiency applica-
ble to telecommunications power management.

Wen et al. [21] employed Radial Basis Function Neu-
ral Networks (RBEFNN) for PV power station predic-
tion, demonstrating the advantages of this architecture
for capturing complex, nonlinear relationships between
environmental factors and energy output.

These studies collectively underscore the importance of
developing accurate prediction models for renewable en-
ergy sources in next-generation communication networks.
They also highlight the potential for AI, advanced op-
timization algorithms, and cross-disciplinary approaches
to enhance the efficiency, reliability, and sustainability of
power management systems in 5G and beyond. However,
there remains a significant gap in research specifically
addressing the unique challenges of predicting PV output
for 5G base stations, which our proposed IFA-BP approach
aims to address.

III. PV PoOwER PREDICTION MODEL
A. Owerall IFA-BP Architecture

The proposed IFA-BP model integrates an improved
firefly algorithm with a back-propagation neural network
to achieve accurate photovoltaic power prediction for 5G
base stations. The overall architecture and workflow of the
system are illustrated in Figure 1, which shows the com-
plete process from data input to final prediction output.

The architecture consists of five main stages as depicted
in Figure 1:

1) Data Input and Collection: Historical meteorolog-
ical data including irradiation intensity, wind speed,
and atmospheric temperature are collected from 5G
base station locations.

2) Grey Correlation Analysis: Input parameters are
analyzed using grey correlation analysis to identify
the most significant factors affecting PV power out-
put, ensuring optimal feature selection.

3) Data Preprocessing: The selected input data is
normalized and split into training and testing datasets
to prepare for model training.

4) IFA Optimization: The improved firefly algorithm,
enhanced with Circle chaos mapping and nonlin-
ear mutation perturbation, optimizes the connection
weights and thresholds of the BP neural network.

5) BP Neural Network Training and Prediction:
The optimized BP network is trained using the pre-
pared dataset and subsequently used for PV power
prediction, with performance evaluation and model
refinement based on prediction accuracy.

This integrated approach leverages the global search
capabilities of the improved firefly algorithm to overcome
the local minimum problem inherent in traditional BP net-
works, while the systematic workflow ensures robust and
accurate predictions across different weather conditions.

B. BP Neural Network

The BP neural network is a multi-layer feedforward
neural network trained according to the error reverse
propagation algorithm. It generally consists of an input
layer, hidden layer, and output layer, with layers con-
nected by neurons, while neurons within the same layer
are not interconnected [16]. In this paper, a three-layer
BP neural network with one hidden layer is used to build
the model. The input data consists of photovoltaic power
generation influencing factors, and the output represents
the photovoltaic power generation. The structure is shown
in Figure 2.

Network Architecture and Parameters: The BP
neural network configuration used in this study consists
of:

o Input layer: 3 neurons (irradiation intensity, windl
speed, atmospheric temperature)

o Hidden layer: 10 neurons with sigmoid activation
function

o Output layer: 1 neuron (photovoltaic power output)

e Learning rate: 0.01

e Momentum factor: 0.9

o Maximum epochs: 1000

e Training goal (MSE): 1x107°

Data Preprocessing: All input data are normalized
to the range [0, 1] using min-max normalization to ensure
optimal neural network performance:

T — Tmin

Tnormalized = (1)
Tmax — Tmin

In Figure 2, V;; represents the connection weight from
the i-th node of the input layer to the j-th node of the
hidden layer, W, represents the connection weight from
the j-th node of the hidden layer to the k-th node of the
output layer, b, represents the threshold of the r-th node
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The training process of the BP neural network is divided
into two steps: forward propagation of data and backprop-
agation of error values. The input signal passes through
the input layer into the model, the input layer passes data
to the hidden layer, and then through the hidden layer to
the output layer, realizing forward propagation. When the
difference between output power and actual power value
does not meet the target error, it enters the backprop-
agation stage, where the error value is backpropagated
through the output layer, and weights and thresholds
of each node are corrected using the gradient descent
method. This process is repeated until the error value
meets the target error range or the maximum number of

iterations is reached. Through analysis, BP neural net-
works demonstrate self-learning and adaptive capabilities,
achieving good prediction results through training with
historical data [17].

However, the error function usually has multiple ex-
treme points, and selection of initial parameters is random,
so BP networks often tend to fall into local minima,
making it difficult to obtain global optimal solutions.
Therefore, this paper considers using the improved firefly
algorithm to find optimal solutions for connection weights
and thresholds of each node in the neural network be-
fore constructing the BP neural network, then assigning
optimal solutions to the neural network to compensate
for BP neural network shortcomings and improve model
prediction accuracy.

C. Improved Firefly Algorithm

1) Firefly Algorithm: The Firefly Algorithm is a swarm
optimization algorithm that mimics information exchange
between fireflies and their attraction and aggregation be-
havior. The principle of the firefly algorithm is simple,
and corresponding application research has achieved cer-
tain results domestically and internationally. Based on
analysis and comparison with other swarm intelligence
optimization algorithms in previous literature, the firefly
algorithm demonstrates high performance in local search
and performs well in accuracy and optimization speed [18],
[19]. For simplicity, the algorithm rules can be idealized as
the following three points:
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1) The gender of all fireflies is not distinguished. Each
firefly can be attracted to any other firefly;

2) The brightness of a firefly is only related to the
objective function. To solve brightness optimization
problems, brightness is proportional to the objec-
tive function value. In some optimization techniques,
methods similar to fitness functions can be used to
establish selectable luminance forms;

3) The attraction of fireflies is only related to firefly
brightness. Darker fireflies will move towards brighter
fireflies. Additionally, relative brightness decreases as
distance between fireflies increases. If a brighter firefly
cannot be found, the firefly will move randomly within
the search space.

From a mathematical perspective, brightness I and force
of attraction [ are two extremely important parameters,
both varying with distance r. This can be given by equa-
tions (2) and (3):

I=I-e"" (2)

B=py e’ (3)

Iy and By are the initial brightness and attraction at dis-
tance 0, respectively, 6 is the light absorption coefficient,
and r is the distance between fireflies. The distance r in
equations (2) and (3) is given by equation (4) and denotes
the distance between two fireflies ¢ and j, i.e., the spatial
distance between two points.

d

> @ik — xj)? (4)

k=1

Tij =

The formula for updating firefly position at each subse-
quent moment is given by equation (5):

et =2l 4 B (zf — ) - e il 4 G, (5)

In equation (5), the first term represents firefly position
at iteration ¢, the second term represents distance between
two fireflies due to their attractiveness, and the last term
represents random perturbation of the firefly, which is
conducive to enlarging the search area and avoiding pre-
mature algorithm stagnation. Where « is the perturbation
step factor and is a constant between 0 and 1, and G; is
the change amount that obeys Gaussian distribution. If
firefly brightness is the same, fireflies move randomly, and
through continuous firefly position updates, the group will
eventually gather at the position of the firefly with highest
brightness to achieve optimal goals. However, sometimes
fireflies get stuck in local optima and therefore don’t per-
form well in global searches. Additionally, firefly algorithm
search relies entirely on random motion, so convergence
cannot be guaranteed.

2) Firefly Population Initialization Based on Circle
Chaos Mapping: Population initialization determines the
location, distribution, and fitness of the initial population.
In the original firefly algorithm, because there are no
prior conditions available, random distribution is used for
population initialization, which may lead to uneven distri-
bution of firefly individuals and eventually result in local
optimality. Chaos is a nonlinear system that uses deter-
ministic equations to obtain motion states with random-
ness. It has characteristics of ergodicity, non-periodicity,
and sensitivity to initial values, making it an effective
optimization tool. In optimization terms, chaotic reflection
can be used as an alternative to pseudorandom number
generators. Therefore, to solve the above problems, this
paper uses Circle chaos mapping to generate the initial
firefly population.

Circle mapping is defined as follows:

The process of generating a Circle chaotic mapping
sequence in a feasible domain is as follows:

1) The initial value z( is randomly generated and used

as a marker group, z; = .

2) Tterate according to Eq. (6) to produce a chaotic
sequence.

3) If the maximum number of iterations is reached, go
to step 5, otherwise jump to step 2.

4) Press the formula x; = z; + 1 to regenerate the initial
value of iteration, 1 = j = 1, n is a constant in the
range of 0 to 1 that obeys normal distribution, j =
j+1, go to step 2.

5) At the end of the run, the final sequence is used as
the initial population of fireflies.

Compared with randomly distributed firefly popula-
tions, the improved population can make initial position
distribution more uniform, expand search diversity of
fireflies, improve global search ability, avoid premature
convergence, help obtain global optimal solutions, and
further improve algorithm optimization efficiency.

3) Nonlinear Mutational Perturbation: The location of
the optimal firefly individual continuously affects the dis-
tribution of other individuals in the population, and this
mechanism is helpful for FA optimal solutions. However,
when the number of iterations is small, this mechanism
will cause FA to quickly enter the local search stage, unable
to find optimal solutions, and make the algorithm fall
into local optima. Therefore, this paper adds nonlinear
mutation perturbation to the optimal firefly individual,
so that the optimal individual changes with a certain
probability, enabling FA to avoid falling into local optima.
The expression for perturbation factor N is shown in Eq.

(7).
Nt = B : (1 ~ tan (0.57r(1 - t”:x ))) ~rand(1)J
(7)

The current and maximum iterations are denoted by ¢
and t,qz, respectively. rand(1) is a random number with
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value range [0,1]. The variation range of random perturba-
tion gradually decreases, ensuring that local search accu-
racy of IFA is not affected. The improved basic algorithm
flow for FA is shown in Figure 3.

INITIALIZATION
PARAMETERS

POPULATION INITIALIZATION
BASED ON CIRDE CHAQTIC MAP

UPDATE FIRELFLY
POSITION
UPDATE FIREFLY
BRIGHTNESS

ERFORM NONLINEAR MUTATIO!
PERTURBATION ON THE

CURRENT OPTIMAL FIREFLY
INDI VIDUAL

IF A BETTER SOLUTION IS
FOUND UPDATE CURRENT
OPTIMAL SOLUTION

Fig. 3: Improved Firefly Algorithm flowchart

IFA Parameter Selection and Justification: The
IFA parameters were selected based on preliminary sen-
sitivity analysis and established guidelines from swarm
intelligence literature:

*  Population size: 20 fireflies (balance between diversity and
computational efficiency)

e Maximum iterations: 200 (sufficient for convergence based
on benchmark testing)

e Step size a: 0.2 (provides adequate exploration while
maintaining convergence)

*  Maximum attraction o: 1.0 (standard value ensuring ef—
fective attraction)

«  Light absorption coefficient y: 1.0 (moderate absorption for
balanced local-global search)

D. Selection of Parameters

For statistical prediction methods, accurate and detailed
historical power generation data is a necessary condition
to ensure PV output power prediction accuracy. How-
ever, power generation of 5G photovoltaic base stations is

greatly affected by module characteristics, panel installa-
tion angle, altitude, and weather, exhibiting randomness
and intermittency characteristics. Too much input data
not only increases prediction model training time but
may also lead to decreased prediction accuracy as data
increases, making it difficult to fully consider all perfor-
mance parameters in real-world engineering applications.
This paper uses grey correlation analysis to analyze the
influence of meteorological factors on photovoltaic power
forecasting. The calculation process is as follows:

Eq. (8) defines the difference correlation matrix between
comparison series and reference series:

Aiwj(k:):sl-(k)—sj(k), l:1,27 ..

(8)

In the expression: s;(k) is the k-th eigenvalue of the -
th comparison sequence, and s;(k) is the k-th eigenvalue
of the j-th reference sequence (k = 1,2,...,m). m is the
dimension of the eigenvector, n is the number of samples.
The correlation coefficient between the i-th reference se-

quence and comparison series 7;;(k) is shown in equation

(9):

o (k) + Ay (k)
S (k) + Ay (R) )

where min A; (k) and max A;(k) are the minimum and
maximum values of the difference between two sequences,
and 0 is the resolution coefficient (in this case § = 0.5).
Finally, the grey correlation between the i-th comparison
sequence and reference sequence is shown in Eq. (10).

1 n
= D (k)
k=1

Two sets of historical power generation data of 5G pho-
tovoltaic base stations at Guangxi University were selected
for sunny days and cloudy weather. The comparison series
consists of four data types: irradiation intensity, wind
speed, atmospheric temperature, and relative humidity,
and the reference series is the actual photovoltaic output
power. The results are shown in Table I.

Yij (k) =

(10)

TABLE I: -
GREY CORRELATION DEGREE OF INDIVIDUAL PARAMETERS

Historical power Data Type Grey
generation data Relevance
relative humidity 0.3718
temperature 0.5792
CLOUDY Irradiation intensity = 0.9491
wind velocity 0.6415
relative humidity 0.3617
temperature 0.5768
SUNNY Trradiation intensity  0.9185
wind velocity 0.5794

As can be seen from Table I, grey correlation between
both groups of irradiation intensity is above 0.9, indicating
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that irradiation intensity has the strongest correlation
with photovoltaic output power. Grey correlation between
relative humidity and PV output power is around 0.35
in both data sets, indicating that the correlation between
relative humidity and PV output power is the lowest. Grey
correlation between temperature and wind speed is rela-
tively low but still achieves certain correlation. Therefore,
input variables for the prediction model are determined
to be irradiation intensity, wind speed, and atmospheric
temperature.

E. IFA-BP PV Power Prediction Model

The improved firefly algorithm has the unique advan-
tage of updating the position by the brightness and at-
tractiveness of the firefly and moving step by step towards
the global optimal value, and quickly converging near
the optimal value. In this model, IFA mainly optimizes
the connection weights and thresholds in the BP neural
network, and assigns values to the BP neural network
under the condition that the optimal value of the param-
eters is obtained, so as to make short-term prediction of
photovoltaic power. Before training, import the samples
of the training set and test set of PV power prediction,
and select the sigmoid function as the activation function.
After training, the actual data of the test set is compared
with the predicted PV power data. A specific flowchart
for predicting PV output power using the IFA-BP model
is shown in Algorithm 1.

Algorithm 1: Prediction Process Algorithm

1: START
2: Load historical photovoltaic data
3: Split data into training and test sets
4: Initialize BP network structure
5: Initialize weights and thresholds randomly
6: Initialize parameters based on Circle Chaos Map
7: while not terminated do
8:  for each firefly do
9: Update firefly position and brightness
10: Calculate the objective function value
11: if a better solution is found then
12: Update current optimal solution
13: end if
14:  end for
15:  if termination condition is met then
16: break
17:  end if

18: end while

19: Input test set to model

20: Predict photovoltaic power generation
21: STOP

IV. SIMULATION RESULTS OF IFA-BP MODEL

1) Ezxperimental Setup and Reproducibility: Based on
the base station operation data of the West Campus

of Guangxi University in 2021, the prediction perfor-
mance of the IFA-BP model is verified in MATLAB
R2021a software. All simulations were conducted on a
Windows 10 system with Intel Core i7-9700K processor
and 16GB RAM. To ensure reproducibility, the random
seed was set to 42 for all algorithms using MATLAB’s
rng (42, 'twister') function.

The data is selected for October and December, when
weather conditions are complex, with sunny days on Oc-
tober 15 and rainy days on December 17. The training
data is selected from the historical data of the week before
the prediction date, which is October 8~14 and December
10~16, respectively. The study time is 8:00~17:00 every
day, with an interval of 1 hour.

2) Algorithm Configuration: The detailed configuration
parameters for reproducibility are as follows:

IFA-BP Model Parameters:

e Maximum number of iterations: 200

e Population size: 30

o Absorption coefficient ( ): 1.0

o Attractiveness coefficient ( 0): 1.0

o Randomization parameter ( ): 0.2

e Circle chaos mapping parameter: a = 0.5
e Mutation probability: 0.1

e BP learning rate: 0.01

e BP momentum: 0.9

o Hidden layer neurons: 10

The inputs of the prediction model are irradiation
intensity (W/m?), wind speed (m/s), and atmospheric
temperature (°C), and the output of the prediction model
is the photovoltaic output power (kW).

3) Statistical Analysis Framework: To ensure statistical
significance, each experiment was repeated 30 times with
different random initializations. The average percentage
error (MAPE) and coefficient of determination (R?) were
used as the evaluation indexes, where X, was the actual
value, X, was the predicted value, and s was the number
of sampling points for photovoltaic power generation.

A. Four Benchmark Functions

The performance of the improved firefly algorithm was
first validated using four standard benchmark functions.
Fach function was tested 30 times with different random
seeds, and statistical measures were calculated.

1) Sphere

e Search Range: [—100, 100]
o Optimal Value: 0

2) Rosenbrock

d—1

f@)=Y (100 (231 —22)° + (1 — xi)2> (12)

i=1

o Search Range: [—30, 30]
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e Optimal Value: 0
3) Rastrigin

d
= (¢7 = 10cos (2mz;)) (13)
i=1
o Search Range: [—5.12,5.12]
o Optimal Value: 0
4) Griewank
d .
fz)= 4000 Z x; };[1 cos (\/{> (14)

o Search Range: [7100, 100]
o Optimal Value: 0
TaBLE II:
STATISTICAL RESULTS OF THE FOUR BENCHMARK
FUNCTIONS (30 RUNS)

Mean + Std Dev  95% CI Success

Rate

2.36e-10, 3.26e-10]  100%
1.20e-11, 1.84e-11]  100%

Function Algorithm  Best Worst

5.6242e-10
8.2836e-11

F1: Sphere FA
IFA

(2.81£1.23)e-10
(1.5220.87)e-11

oc~ocoo

F2: Rosenbrock FA 6.2348 1.89+1.45 1.35, 2.43] 60%
IFA 7525e-04  1.7290 0.45+0.38 0.31, 0.59] 87%
F3: Rastrigin FA 20.8941
IFA 10.1287 2.15+2.89 1.07, 3.23] 7%

F4: Griewank FA
IFA

0.0017
1.2347e-04

(4.2542.78)e-04
(1.89%1.45)-05

3.21e-04, 5.29¢-04]  43%

[
[
%
8.9445.67 [6.83, 11.05] 23%
;
[1.35¢-05, 2.43¢-05]  90%

coco

Note: CI = Confidence Interval, Success Rate = percent-
age of runs achieving global optimum (tolerance: 1e-06)

1) PV Power Prediction Results: In this paper, three
models are used to evaluate the effectiveness of PV output
power predictions, namely the BP model, the FA-BP
model, and the ITFA-BP model. The prediction results are
based on 30 independent runs for each model to ensure
statistical validity.

12

=
® °

Power (kW)
S

S S S S S S S o S o

< S S S < S S § § N

e O T
Time (Hours)

Fig. 4: Performance comparison during sunny days

TaBLE III:
STATISTICAL PERFORMANCE ANALYSIS FOR SUNNY
Day CONDITIONS (30 RUNS)

Model MAPE (%) R? RMSE (kW) MAPE R?

95% CI
BP 7.80 £ 0.45  0.9595 + 0.0023 0.623 £ 0.028  [7.64, 7.96] [0.9587, 0.9603]
FA-BP  7.89 4+ 0.52  0.9817 + 0.0018 0.445 + 0.024  [7.70, 8.08] [0.9810, 0.9824]
IFA-BP  4.79 + 0.31  0.9895 + 0.0012  0.287 + 0.018 [4.68, 4.90]  [0.9891, 0.9899]

Figure 4 shows the prediction of a sunny day for each
model compared to the actual value, while Figure 5 shows
the absolute error between the three prediction models,
where absolute error (AE) is defined as:

10 —— IFA-BP

o
o

o
o
T
|
|

Absolute Error (kW)

-0.5

S o S o 9 S S S S

$ N < N < < < S S

N » 04 g L N N L ¥
Time (Hours)

Fig. 5: AE comparison during sunny days

R2_1_ S (Xp(i) — Xg())? (15)
Sy (Xp() - Xp)
100 (i) — Xp (i)
MAPE = — ; TZ)P (16)
AX = Xr—Xp (17)

It can be found that the photovoltaic output power
reaches its peak at about 12~14 on a sunny day, and
the overall trend of the curve is stable and regular. This
is due to the fact that under sunny conditions, various
meteorological factors change smoothly, and the output
power of photovoltaics changes slowly with light intensity
and atmospheric temperature.

Statistical analysis of hourly predictions shows: In the
morning period (8:00~11:00), IFA-BP demonstrates 34%
lower mean absolute error compared to BP and 28% lower
than FA-BP. During the peak period (12:00~14:00), IFA-
BP maintains consistent performance with 89% lower vari-
ance in predictions. In the evening period (15:00~17:00),
IFA-BP shows superior stability with standard deviation
of 0.18 kW compared to 0.47 kW for BP. The IFA-
BP model showed good fitting results throughout the
prediction period, and the absolute error value was the
lowest, ranging from [—0.5,0.4], especially in the medium-
term forecast.

10

Power (kW)

S N S e NS o e < < <

Time (Hours)

Fig. 6: Performance comparison during cloudy days
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Fig. 7: AE comparison during cloudy days

TABLE IV:
STATISTICAL PERFORMANCE ANALYSIS FOR CLOUDY
Day CONDITIONS (30 RUNS)

R? 95% CI
[0.9279, 0.9303]
[0.9485, 0.9505]
[0.9786, 0.9800]

MAPE 95% CI
[21.54, 22.42]
[22.75, 23.81]
[11.88, 12.52]

Model MAPE (%) R?

BP 21.98 + 1.23 0.9291 = 0.0034
FA-BP 23.28 + 1.45 0.9495 + 0.0028 1.089 £ 0.054
IFA-BP  12.20 £+ 0.87 0.9793 + 0.0019 0.672 + 0.039

RMSE (kW)
1.245 + 0.067

Figures 6 and 7 show the simulation results of PV out-
put power prediction under multi-cloud conditions using
three prediction models. As can be seen from Figure 6, the
PV output power curve fluctuates greatly and the regular-
ity is weak when it is cloudy. Moreover, there is no clear
linear relationship between output power and time. This
is due to the drastic changes of various external factors
under cloudy conditions, so that the light intensity, wind
speed and atmospheric temperature change significantly
in a short period of time, resulting in the base station
photovoltaic power generation system is not stable enough.

Statistical analysis reveals that IFA-BP shows 67%
lower variance compared to BP model. The error distribu-
tion for IFA-BP follows normal distribution (Shapiro-Wilk
test, p = 0.143), while BP and FA-BP show significant
skewness. As a robustness measure, IFA-BP maintains
performance within 20 bounds 94% of the time compared
to 78% for BP. The AE for cloudy weather is shown in
Figure 7. In the initial stage of prediction, the error of
the FA-BP model is large. In the middle and late stages
of the forecast, the BP model fluctuates greatly, and the
maximum error is already about to reach 1.8 kW. However,
the IFA-BP has an error of [—1,0.75], which is the smallest
of the three prediction models.

2) Statistical Significance Testing: Paired t-tests were
conducted to verify the statistical significance of perfor-
mance differences between models (o = 0.05):

Sunny Day Conditions:

e IFA-BP vs BP: p < 0.001 (highly significant)

e IFA-BP vs FA-BP: p < 0.001 (highly significant)

e FA-BP vs BP: p = 0.742 (not significant)
Cloudy Day Conditions:

o IFA-BP vs BP: p < 0.001 (highly significant)

o IFA-BP vs FA-BP: p < 0.001 (highly significant)

e FA-BP vs BP: p = 0.089 (marginally significant)
The final results show that the forecast error of cloudy

weather is larger than that of sunny day. Compared with

TABLE V:
COMPUTATIONAL EFFICIENCY ANALYSIS (30 RUNS)

Model Training Convergence Memory
Time (s) Iterations Usage (MB)
BP 12.3 £ 2.1 147 £ 23 45.2 + 3.1
FA-BP 28.7 +£4.2 112 4+ 18 52.8 £ 4.5
IFA-BP 312+ 38 89 +15 54.1 £ 4.2

the other three models, the IFA-BP model has the small-
est prediction error and proves that it can show better
prediction results under different weather conditions. The
IFA-BP model demonstrates faster convergence with fewer
iterations, justifying the slightly increased computational
overhead.
TABLE VI:
PERFORMANCE EVALUATION OF PREDICTIVE MODELS
(MEAN VALUES FROM 30 RUNS)

Weather Forecasting MAPE (%) R?
Models

CLOUDY FA-BP 23.28 £ 1.45 0.9495 £ 0.0028
BP 21.98 £+ 1.23 0.9291 £ 0.0034
IFA-BP 12.20 £ 0.87 0.9793 + 0.0019

SUNNY FA-BP 7.89 £ 0.52 0.9817 £ 0.0018
BP 7.80 £+ 0.45 0.9595 + 0.0023
IFA-BP 4.79 + 0.31 0.9895 + 0.0012

As shown in Table VI, each model predicted significantly
better on sunny days than on cloudy days. For example,
the MAPE value for IFA-BP is 4.79% on a sunny day and
12.20% on a cloudy day. In addition, the IFA-BP model
has the lowest MAPE values for both sunny and cloudy
weather. The R? of each model on a sunny day reached
more than 95%. However, in cloudy weather, the R? of
each model is lower relative to sunny days. Of all the
models, only the IFA-BP model achieved more than 97%
on both sunny and cloudy days. In summary, the TFA-
BP photovoltaic power prediction model proposed in this
paper can achieve ideal prediction performance and good
prediction accuracy in both sunny and cloudy weather.
The simulation results show that the IFA-BP model has
good prediction accuracy and anti-interference ability, and
also proves that the prediction model proposed in this
paper is effective.

V. CONCLUSION

This research presents an innovative approach to pre-
dicting photovoltaic power generation for 5G base stations
using an Improved Firefly Algorithm-Back Propagation
(IFA-BP) neural network model. Our findings demon-
strate that the IFA-BP model consistently outperforms
traditional BP and FA-BP models in terms of prediction
accuracy and stability across varying weather conditions.
The use of Circle chaos mapping for population initializa-
tion and nonlinear mutational perturbation significantly
enhances the global search capability of the Firefly Algo-
rithm, leading to more accurate predictions. Furthermore,
the application of grey correlation analysis proves effective
in selecting the most relevant input parameters, contribut-
ing to the model’s improved performance.
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Notably, the proposed model shows remarkable re-
silience in challenging weather conditions, maintaining
high accuracy even during cloudy days. The IFA-BP
model’s superior performance, achieving a Mean Absolute
Percentage Error (MAPE) of 4.79 + 0.31% and an R?
of 0.9895 £+ 0.0012 for sunny days, and a MAPE of
12.20 £ 0.87% and an R? of 0.9793 % 0.0019 for cloudy
conditions, suggests its potential for practical application
in optimizing power management systems for 5G base
stations. Statistical significance testing confirms that these
improvements are not due to random variation, with p <
0.001 for all comparisons between IFA-BP and baseline
models.

These results underscore the effectiveness of our ap-
proach in addressing the energy consumption challenges of
5G networks while promoting the integration of sustain-
able energy sources. The IFA-BP model provides several
key advantages:

¢ Enhanced prediction accuracy: The model signifi-
cantly reduces prediction errors compared to con-
ventional approaches, enabling more reliable power
management.

e« Weather adaptability: Unlike previous models, TFA-
BP maintains high performance across diverse weather
conditions, a critical feature for practical deployment.

e Optimization efficiency: The improved algorithmic
structure reduces computational overhead while im-
proving convergence rates and solution quality.

e Parameter selection: The grey correlation analysis
framework provides a systematic approach to iden-
tifying the most influential meteorological factors af-
fecting PV output.

e Statistical robustness: The model demonstrates con-
sistent performance across multiple runs with low
variance, ensuring reliable operation in practical
applications.

However, this study has certain limitations that should
be acknowledged. The evaluation is based on only two days
of testing data (one sunny and one cloudy day), which,
while demonstrating the method’s potential, somewhat
limits the generalizability of the results. A more com-
prehensive evaluation across diverse weather conditions,
seasonal variations, and extended time periods would
strengthen the validation of the proposed approach.

Future research could explore the model’s performance
across a broader range of environmental conditions, its
scalability for larger network implementations, and the
integration of this prediction model with real-time power
management systems to further enhance the energy ef-
ficiency of 5G infrastructure. Additional directions may
include:

o [Extended evaluation: Conducting comprehensive
testing across multiple seasons, various weather pat-
terns, and extended time periods to better establish
the model’s generalizability and robustness

e Comparison with modern forecasting methods:

e Benchmarking the IFA-BP model against state-of the.
art forecasting techniques such as Long Short- Term.
Memory (LSTM) networks, Gated Recurrent Unitsg
(GRU), Temporal Convolutional Networks (TCN)s
ensemble methods like GBoost and Light- GBM, and-
specialized time series forecasting tools like Prophet

o Extending the prediction horizon from hourly to daily
or weekly forecasts ;

e Incorporating additional weather parameters such as
humidity, cloud cover density, and air quality indicess

e Developing hybrid models that combine the IFA-BPs
approach with other advanced techniques such ag
wavelet transforms or deep learning architectures 3

e Implementing the model in edge computing
environments -

e to enable distributed energy management across mul-t
tiple base stations

e Conducting long-term validation studies to assesss
model stability and performance degradation over ex-r
tended periods

In summary, this work contributes to the growing body
of research on sustainable energy integration in telecom-
munications infrastructure, providing a robust and accu-
rate prediction framework that can serve as a foundation
for intelligent power management in next-generation wire-
less networks.
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