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Summary — With the increasing integration of photovoltaic (PV) 
systems into power grids, accurate short-term solar irradiance fore-
casting is essential for efficient energy management. This paper pre-
sents a machine learning model developed using a synthetic dataset 
designed to analyze the potential of multicamera sky imaging for re-
gional solar irradiance forecasting. The dataset, generated in a con-
trolled simulation environment, captures cloud dynamics and solar 
irradiance at multiple locations within a region. The proposed model 
utilizes sky images from multiple virtual cameras strategically posi-
tioned to provide spatially distributed observations. By combining 
image-based features with historical irradiance measurements, the 
model shows improved forecasting accuracy compared to single-cam-
era approaches. The results indicate that multi-camera systems better 
capture the spatial variability of cloud cover and allow the model to 
predict solar irradiance for locations without installed cameras. This 
research highlights the potential of multi-camera configurations for 
regional forecasting and provides valuable insights for grid operators 
and energy planners. The results support the adoption of distributed 
sky imaging networks as a practical approach to improve solar ir-
radiance predictions and ultimately contribute to the stability and 
reliability of solarpowered energy systems through improved forecast 
accuracy.

Keywords — Solar irradiance forecasting, photovoltaic systems, 
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I. Introduction

Photovoltaic power plants (PVPPs) are among the most wide-
ly used renewable energy power plants [1]. Their popularity 
stems from their ability to harness solar energy, an abun-

dant and inexhaustible resource while generating electricity with 
minimal environmental impact. Due to their lower environmental 
impact, research has recently focused on further improving solar 
cells in terms of efficiency, production costs, and durability. The 
constant advances in photovoltaic technology have led to higher 
efficiency, longer lifespan, and lower manufacturing costs, which 
have accelerated the use of PV systems worldwide. As a result, the 

share of PVPPs in the structure of production units in the energy 
sector is steadily increasing, making solar energy a cornerstone of 
the transition to cleaner energy systems [2]. 

The unpredictability of electricity generation from renewable 
energy sources, including solar energy, leads to voltage and fre-
quency fluctuations within the power grid, causing difficulties in its 
management [3]. These fluctuations are caused by sudden changes 
in solar radiation due to cloud movements, atmospheric conditions, 
and other meteorological factors. Changes in the availability of re-
newable energy can occur within very short periods, often only a 
few minutes, during which other, conventional power plants cannot 
adjust their output quickly enough. The inherently slow response 
of conventional power plants, such as coal or gas-fired power 
plants, exacerbates the imbalance between electricity generation 
and consumer demand. When the balance between generated and 
consumed electricity is disturbed, deviations from nominal voltage 
and frequency values occur, resulting in reduced quality of electri-
cal energy and potential damage to sensitive equipment [4], [5]. 

To mitigate the negative impact of renewable energy sources 
on the power grid, it is necessary to predict changes in the avail-
ability of these energy sources with a certain degree of accuracy. 
The highly dynamic nature of meteorological conditions makes 
accurate long-term cloud forecasting at a given location difficult 
[6]. Conventional meteorological models, while effective at larger 
scales, are often inadequate when applied to local cloud dynamics 
relevant to PV power prediction. A promising solution to this chal-
lenge is the short-term prediction of cloud cover at the observed 
location, typically 10 to 15 minutes in advance within a radius of 
2000 meters. Narrow spatial and temporal scales enable more ac-
curate prediction of cloud cover and thus better integration of solar 
energy into the grid and more effective planning of the operation of 
conventional power plants [7]. 

Implementing a reliable power generation forecasting system 
reduces the need for balancing power, i.e. the reserve power needed 
to compensate for deviations of renewable energy generation from 
the contracted schedule. More accurate forecasts consequently re-
duce the cost of integrating renewable energy sources into the elec-
tricity grid by minimizing the dependence on reserve power plants 
and ancillary services [8]. In addition, the reduction of production 
curtailments due to large fluctuations leads to higher efficiency of 
existing systems. This improved efficiency combined with lower 
integration costs not only benefits grid operators but also leads to 
lower electricity prices for consumers within the grid. In addition, 
improved forecasting capabilities support grid stability, reliability, 
and resilience, especially as the share of variable renewable en-
ergy sources continues to increase in modern power systems [9]. 
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Building on the existing foundation, this research focuses on the 
development of a short-term prediction model for solar radiation 
using a synthetic database. The main objective is to investigate 
the potential of using multiple sky cameras at different locations 
to predict solar irradiance on a regional scale. By using data from 
multiple cameras, the model can detect cloud patterns, movements, 
and shadow propagation, all of which have a significant impact on 
the production of photovoltaic power plants. The use of multiple 
cameras provides the model with a more comprehensive under-
standing of atmospheric dynamics, as the combination of different 
viewing angles enables better recognition of cloud formation and 
movement trends. 

The ability to forecast solar radiation regionally offers several 
advantages. It enables predictions for areas where no cameras are 
directly installed, extending the practical applications of the model 
beyond the monitored locations. This is particularly valuable for 
distributed PV systems, where individual installations may be 
spread over a larger geographical area. In addition, improved short-
term forecasting supports better grid management, as operators can 
anticipate fluctuations in solar power generation and implement 
necessary balancing measures more effectively. 

Ultimately, this study shows that it is possible to use multicam-
era configurations to improve short-term solar irradiance forecast-
ing at a regional level. The knowledge gained from this study con-
tributes to ongoing efforts to improve the integration of renewable 
energy sources into modern power systems and to support a more 
stable, efficient, and reliable use of solar energy. 

II. Basics and Motivation for Regional Solar 
Forecasting Models 

In recent years, with significant integration of PV power plants, 
mostly at lower voltage levels, accurate solar irradiance forecasting 
is becoming crucial for stable and secure power system operation. 
Solar irradiance forecasting is an input variable for two important 
power system operational planning processes: 

• PV production forecasting 

• Load forecasting 

While direct PV production forecasting is mainly used for PV 
power plants connected to the transmission voltage levels, load 
forecasting algorithms have an indirect forecast of PV generation 
connected to the distribution voltage levels embedded as a part of 
the overall forecasting function. While the load forecasting func-
tion is usually only performed as part of day-ahead operational 
planning processes, the forecast of renewable energy production is 
also performed in intra–day operational planning processes, usual-
ly one hour ahead. Such an approach is justified due to the sudden 
changes in local weather forecasts, which can have a significant 
impact on the production of PV and wind power plants. Ultra-
shortterm PV production forecasting 15 minutes ahead of real-
time could further improve the power system operation efficiency 
and security, enabling the operators in control centers to take the 
necessary preventive operational measures just ahead of real-time. 
This way, the operating personnel still have time to optimize power 
system operation, while if those measures were curative and done 
after the changes in the PV production have occurred, there would 
be much less room for optimized operational actions. 

Over the years, a large number of different methods and ap-
proaches have been developed to predict the production of PV 
systems [10]. These methods have evolved significantly due to 
the growing need for more accurate and reliable predictions to 
optimize grid operations and support the increasing share of so-
lar energy in modern power systems. The categorization of these 

methods is generally based on the type of input data, approaches 
to data pre-processing, temporal frequency of data collection, spa-
tial resolution, and temporal and spatial horizon [11]. In addition, 
factors such as the complexity of the model, the computational re-
quirements, and the availability of historical data play a crucial role 
in determining the effectiveness of these forecasting methods. 

An important aspect of forecasting the production of photovol-
taic power plants lies in the analysis of local weather conditions, 
especially solar radiation, whose fluctuations directly affect the 
output power and allow an accurate prediction of future produc-
tion. Solar radiation is the main factor influencing photovoltaic 
output, and its fluctuations are influenced by various atmospheric 
phenomena such as cloud cover, aerosols, and seasonal changes. 
Parameters such as wind speed, temperature, time of day, and rela-
tive humidity, on the other hand, have a much lower correlation 
with the production of photovoltaic systems. While these mete-
orological variables are useful for broader climatological analyses, 
they are often less relevant for short-term predictions. Such data 
are often subject to fluctuations due to various conditions, such as 
changes in wind direction and speed at different heights above the 
ground and the relative stability of temperature over a short period 
within a day [12]. Therefore, these parameters often require more 
complex models and algorithms for effective inclusion in forecast-
ing models.

The importance of short-term prediction of solar irradiance 
cannot be neglected when it comes to predicting the output power 
of photovoltaic power plants. This type of prediction is particularly 
important during periods of high solar variability, e.g. on partly 
cloudy days, when rapid changes in irradiance can lead to signifi-
cant fluctuations in PV output. The complexity of this task lies in 
the inherent randomness and non-linearity of solar radiation, which 
is particularly pronounced in changing weather conditions. Many 
scientific studies have emphasized the use of artificial neural net-
works (ANN) for such forecasting models due to their ability to 
adapt to complex and nonlinear patterns [13], [14]. These models 
use historical and real-time data to learn the intricate relationships 
between atmospheric conditions and solar radiation. Nevertheless, 
further refinement of these models in terms of accuracy and robust-
ness is needed [15], especially in scenarios with highly dynamic 
cloud formations. 

Fig. 1. Comparison of satellite and ground-based cloud motion vectors.

Forecasts of the output power of photovoltaic power plants are 
often based on satellite images and use models such as cloud mo-
tion vectors, as can be seen in Figure 1 on the left and right. These 
methods use historical cloud movement data to predict future ir-
radiance patterns. However, the limitations of these models, such 
as the assumption of constant cloud shapes and sensitivity to local 
weather conditions, make them less accurate [16]. While satellite 
images are beneficial for large-scale analyses, they often lack the 
spatial and temporal resolution needed for accurate short-term 
predictions. 

Accurate prediction of cloud changes over PVPPs requires de-
tailed data on the state of clouds, including their amount, position, 
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Fig. 1. Comparison of satellite and ground-based cloud motion vectors.

and non-linearity of solar radiation, which is particularly
pronounced in changing weather conditions. Many scientific
studies have emphasized the use of artificial neural networks
(ANN) for such forecasting models due to their ability to adapt
to complex and nonlinear patterns [13], [14]. These models use
historical and real-time data to learn the intricate relationships
between atmospheric conditions and solar radiation. Neverthe-
less, further refinement of these models in terms of accuracy
and robustness is needed [15], especially in scenarios with
highly dynamic cloud formations.

Forecasts of the output power of photovoltaic power plants
are often based on satellite images and use models such as
cloud motion vectors, as can be seen in Figure 1 on the left
and right. These methods use historical cloud movement data
to predict future irradiance patterns. However, the limitations
of these models, such as the assumption of constant cloud
shapes and sensitivity to local weather conditions, make them
less accurate [16]. While satellite images are beneficial for
large-scale analyses, they often lack the spatial and temporal
resolution needed for accurate short-term predictions.

Accurate prediction of cloud changes over PVPPs requires
detailed data on the state of clouds, including their amount,
position, and movement, which are usually obtained from
satellite and radar imagery [17]. However, due to the limited
temporal and spatial resolution of these images, they are often
not suitable for short-term predictions [18]. Ground-based sky
cameras equipped with wide-angle lenses and high-frequency
imaging offer a promising alternative for capturing cloud
dynamics in real-time. The development of new databases
containing more detailed information from sky photography
can significantly improve the accuracy of predictions, but high
equipment costs limit their application [19], [20].

Convolutional neural networks (CNNs) are particularly well
suited for detecting nonlinear relationships between input and
output data in models for short-term prediction of photovoltaic
power plant production. CNNs excel at processing visual
information and can automatically extract relevant features
from sky images without manual intervention. These networks
can recognize patterns in photographs so that they can use
these images as input data. Since photographs of the sky
above a photovoltaic power plant are directly correlated with
its output [21], convolutional neural networks can use these
photographs to discover correlations between sky images and
the output of photovoltaic power plants. By incorporating
additional meteorological data, CNNs can achieve even higher

forecasting accuracy, especially for short-term forecasts.
Based on the review of the available methods, it is con-

cluded that the accuracy of the models generated by convolu-
tional neural networks depends on the quality of the input data.
The availability of high-quality sky images in combination
with precise irradiance measurements plays a crucial role in
the training and validation of the models. This underlines
the importance of a detailed and comprehensive database that
would enable better training of the neural network and thus
a more accurate prediction of the production of photovoltaic
power plants.

The development of specialized databases for short-term
regional solar forecasting is essential for testing and validating
new model architectures. General or single-camera datasets
often fail to capture the spatial variability of cloud cover
over larger areas, which is critical for understanding cloud
dynamics and their impact on photovoltaic production. A cus-
tomized dataset that accounts for different weather conditions
and spatial configurations provides the necessary basis for
improving model performance and exploring novel approaches
for regional solar irradiance forecasting.

III. DEVELOPMENT OF A MULTI-CAMERA SOLAR
FORECASTING MODEL

The development of a reliable model for short-term solar
irradiance forecasting at a regional level requires an innovative
approach that takes into account the complex interactions
between atmospheric conditions and solar irradiance. In this
study, a synthetic database with data from multiple wide-
angle cameras is used to capture cloud movements and their
effects on solar radiation. This method enables the creation
of models capable of predicting solar irradiance for locations
without direct measurements by utilizing spatial relationships
and cloud dynamics.

A. Synthetic Data Set Simulation Framework

The synthetic database used in this study was created using
the Unity development platform, which was chosen for its
flexibility in generating realistic atmospheric scenarios and
simulating dynamic cloud behavior. Unity’s advanced 3D
rendering capabilities and real-time simulation tools enable the
accurate reproduction of sunlight behavior and cloud patterns
under different weather conditions.

To ensure the fidelity of the simulations, the High Definition
Render Pipeline (HDRP) was used. HDRP supports realistic
light interactions, which is essential for modeling variations
in solar radiation due to cloud cover, as can be seen in
Figure 2. The simulation framework consists of several user-
defined scripts that control environmental parameters such as
sun position, cloud density, cloud movement, and temporal
progression to replicate diurnal cycles.

Camera placement is calculated to cover key areas within
the simulation. A script assigns coordinates to each camera,
providing a variety of perspectives in the monitored region.
The cameras capture sky images at regular intervals, providing
a continuous stream of visual data that is essential for training
the forecasting model. The image resolution is set to 64x64
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and movement, which are usually obtained from satellite and radar 
imagery [17]. However, due to the limited temporal and spatial 
resolution of these images, they are often not suitable for short-
term predictions [18]. Ground-based sky cameras equipped with 
wide-angle lenses and high-frequency imaging offer a promising 
alternative for capturing cloud dynamics in real-time. The develop-
ment of new databases containing more detailed information from 
sky photography can significantly improve the accuracy of predic-
tions, but high equipment costs limit their application [19], [20]. 

Convolutional neural networks (CNNs) are particularly well 
suited for detecting nonlinear relationships between input and out-
put data in models for short-term prediction of photovoltaic power 
plant production. CNNs excel at processing visual information and 
can automatically extract relevant features from sky images with-
out manual intervention. These networks can recognize patterns 
in photographs so that they can use these images as input data. 
Since photographs of the sky above a photovoltaic power plant are 
directly correlated with its output [21], convolutional neural net-
works can use these photographs to discover correlations between 
sky images and the output of photovoltaic power plants. By incor-
porating additional meteorological data, CNNs can achieve even 
higher forecasting accuracy, especially for short-term forecasts. 

Based on the review of the available methods, it is concluded 
that the accuracy of the models generated by convolutional neural 
networks depends on the quality of the input data. The availability 
of high-quality sky images in combination with precise irradiance 
measurements plays a crucial role in the training and validation of 
the models. This underlines the importance of a detailed and com-
prehensive database that would enable better training of the neural 
network and thus a more accurate prediction of the production of 
photovoltaic power plants. 

The development of specialized databases for short-term re-
gional solar forecasting is essential for testing and validating new 
model architectures. General or single-camera datasets often fail 
to capture the spatial variability of cloud cover over larger areas, 
which is critical for understanding cloud dynamics and their impact 
on photovoltaic production. A customized dataset that accounts for 
different weather conditions and spatial configurations provides 
the necessary basis for improving model performance and explor-
ing novel approaches for regional solar irradiance forecasting. 

III. Development 0f a Multi-Camera Solar 
Forecasting Model 

The development of a reliable model for short-term solar ir-
radiance forecasting at a regional level requires an innovative ap-
proach that takes into account the complex interactions between 
atmospheric conditions and solar irradiance. In this study, a syn-
thetic database with data from multiple wideangle cameras is used 
to capture cloud movements and their effects on solar radiation. 
This method enables the creation of models capable of predicting 
solar irradiance for locations without direct measurements by uti-
lizing spatial relationships and cloud dynamics. 

A. Synthetic Data Set Simulation Framework 
The synthetic data base used in this study was created using 

the Unity development platform, which was chosen for its flex-
ibility in generating realistic atmospheric scenarios and simulating 
dynamic cloud behavior. Unity’s advanced 3D rendering capabili-
ties and real-time simulation tools enable the accurate reproduction 
of sunlight behavior and cloud patterns under different weather 
conditions. 

To ensure the fidelity of the simulations, the High Definition 
Render Pipeline (HDRP) was used. HDRP supports realistic light 
interactions, which is essential for modeling variations in solar ra-
diation due to cloud cover, as can be seen in Figure 2. The simula-
tion framework consists of several userdefined scripts that control 
environmental parameters such as sun position, cloud density, 
cloud movement, and temporal progression to replicate diurnal 
cycles. 

Camera placement is calculated to cover key areas within the 
simulation. A script assigns coordinates to each camera, provid-
ing a variety of perspectives in the monitored region. The cameras 
capture sky images at regular intervals, providing a continuous 
stream of visual data that is essential for training the forecasting 
model. The image resolution is set to 64x64 efficiency. However, 
the framework allows customization for higher resolutions. 

Fig. 2. Simulated cloud coverage over the target region generated using 
the Unity HDRP framework. The image illustrates the spatial distribution 
of clouds and the resulting shadows cast on the ground. The observed 
area is represented by the green square in the center, corresponding to a 
simulated surface of 50 × 50 kilometers.

Fig. 3. Sky Images from Different Perspectives: Central Camera 
(0,0) with Surrounding Cameras at (-5000,0), (5000,0), (0,5000), and 
(0,-5000).

The simulation process was tested on an M3 MacBook Air gen-
erating a single day’s data from five camera positions with images 
taken every five minutes took about two minutes. The resulting 
data set requires 8.1 MB of disk space, which underlines the scala-
bility of the system for larger simulations. The temporal resolution 
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Fig. 2. Simulated cloud coverage over the target region generated using
the Unity HDRP framework. The image illustrates the spatial distribution of
clouds and the resulting shadows cast on the ground. The observed area is
represented by the green square in the center, corresponding to a simulated
surface of 50 × 50 kilometers.

Fig. 3. Sky Images from Different Perspectives: Central Camera (0,0) with
Surrounding Cameras at (-5000,0), (5000,0), (0,5000), and (0,-5000).

pixels to achieve a balance between detail and computational
efficiency. However, the framework allows customization for
higher resolutions.

The simulation process was tested on an M3 MacBook
Air generating a single day’s data from five camera positions
with images taken every five minutes took about two minutes.
The resulting data set requires 8.1 MB of disk space, which
underlines the scalability of the system for larger simulations.
The temporal resolution is set to five minutes and provides
sufficient data granularity for short-term forecast models.
Shorter intervals, e.g. one minute, can be configured if required
to capture rapid changes in cloud cover.

The simulated area spans 50 x 50 km, with cameras
strategically placed in the center and four surrounding cameras
placed 5 km away in different directions to capture different
cloud perspectives, as shown in Figure 3. Each camera is
accompanied by light sensors that provide reference irradiance
measurements to ensure that the image features match the
irradiance data.

The database is publicly accessible via the Kaggle platform
[22], facilitating data sharing and collaboration between re-
searchers. The published dataset contains extensive metadata
and a total size of 5.1 GB, providing a rich resource for model
training and validation.

This simulation framework forms the basis for the devel-

opment of advanced models for short-term solar irradiance
forecasting. By incorporating multiple perspectives and dif-
ferent weather conditions, the model can more accurately
predict cloud-related variations in solar irradiance, supporting
more reliable and efficient photovoltaic power generation on
a regional scale.

B. Architecture Of The Neural Network

The development and training of the neural network model for
the short-term prediction of solar irradiance was performed
with Google Colab, using an L4 GPU for efficient parallel
processing. Google Colab provides a cloud-based environment
that simplifies access to computational resources without the
need for extensive local infrastructure. This platform was
chosen for its flexibility, ease of collaboration, and support
for GPU-accelerated machine learning workflows.

The synthetic dataset used to train the model includes 340
days of data, with measurements taken every five minutes
between 6:00 am and 6:00 pm. For each of the five sim-
ulated camera locations, the database contains hemispheric
sky images together with corresponding measurements of
available solar radiation. This setup provides a diverse and
dynamic dataset that reflects varying meteorological conditions
on different days and at different times. As illustrated in
Figure 4, the solar irradiance levels for five different locations
are shown for two randomly selected days, providing insight
into the temporal variations in solar radiation under different
meteorological conditions.

Prior to training, the data was pre-processed to improve the
performance of the model. The pre-processing steps included
normalizing the irradiance values and temporal features to
standardize the input distribution. Normalization is crucial
to accelerate the convergence of the model and improve the
stability of the training by ensuring that the input features have
similar scales.

A custom sequence generator was implemented to prepare
the data for training. This generator creates sequences of
nine consecutive images for each camera, with corresponding
irradiance measurements, timestamps, and camera coordinates.
Each sequence represents a 45-minute time window selected
based on the observed average time for cloud movement from
the edge to the center of the sky image. The target value for
the prediction is the irradiance at the center position (0.0) 15
minutes in the future, which corresponds to the third image
ahead of the input sequence.

The decision to use a 45-minute input sequence with a 15-
minute forecast horizon was guided by the dynamic character-
istics of cloud movement within the synthetic data set. In the
simulations, wind speeds vary daily and throughout the day.
However, the 45-minute window has been shown to capture the
predominant cloud movement patterns and allows the model
to learn the relationship between cloud dynamics and solar
irradiance variations.

The selection of these parameters was aimed at enabling a
meaningful performance analysis. Future research using real
data, which is currently unavailable due to a lack of databases
of sky images from multiple locations, will investigate the
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Fig. 2. Simulated cloud coverage over the target region generated using
the Unity HDRP framework. The image illustrates the spatial distribution of
clouds and the resulting shadows cast on the ground. The observed area is
represented by the green square in the center, corresponding to a simulated
surface of 50 × 50 kilometers.

Fig. 3. Sky Images from Different Perspectives: Central Camera (0,0) with
Surrounding Cameras at (-5000,0), (5000,0), (0,5000), and (0,-5000).

pixels to achieve a balance between detail and computational
efficiency. However, the framework allows customization for
higher resolutions.

The simulation process was tested on an M3 MacBook
Air generating a single day’s data from five camera positions
with images taken every five minutes took about two minutes.
The resulting data set requires 8.1 MB of disk space, which
underlines the scalability of the system for larger simulations.
The temporal resolution is set to five minutes and provides
sufficient data granularity for short-term forecast models.
Shorter intervals, e.g. one minute, can be configured if required
to capture rapid changes in cloud cover.

The simulated area spans 50 x 50 km, with cameras
strategically placed in the center and four surrounding cameras
placed 5 km away in different directions to capture different
cloud perspectives, as shown in Figure 3. Each camera is
accompanied by light sensors that provide reference irradiance
measurements to ensure that the image features match the
irradiance data.

The database is publicly accessible via the Kaggle platform
[22], facilitating data sharing and collaboration between re-
searchers. The published dataset contains extensive metadata
and a total size of 5.1 GB, providing a rich resource for model
training and validation.

This simulation framework forms the basis for the devel-

opment of advanced models for short-term solar irradiance
forecasting. By incorporating multiple perspectives and dif-
ferent weather conditions, the model can more accurately
predict cloud-related variations in solar irradiance, supporting
more reliable and efficient photovoltaic power generation on
a regional scale.

B. Architecture Of The Neural Network

The development and training of the neural network model for
the short-term prediction of solar irradiance was performed
with Google Colab, using an L4 GPU for efficient parallel
processing. Google Colab provides a cloud-based environment
that simplifies access to computational resources without the
need for extensive local infrastructure. This platform was
chosen for its flexibility, ease of collaboration, and support
for GPU-accelerated machine learning workflows.

The synthetic dataset used to train the model includes 340
days of data, with measurements taken every five minutes
between 6:00 am and 6:00 pm. For each of the five sim-
ulated camera locations, the database contains hemispheric
sky images together with corresponding measurements of
available solar radiation. This setup provides a diverse and
dynamic dataset that reflects varying meteorological conditions
on different days and at different times. As illustrated in
Figure 4, the solar irradiance levels for five different locations
are shown for two randomly selected days, providing insight
into the temporal variations in solar radiation under different
meteorological conditions.

Prior to training, the data was pre-processed to improve the
performance of the model. The pre-processing steps included
normalizing the irradiance values and temporal features to
standardize the input distribution. Normalization is crucial
to accelerate the convergence of the model and improve the
stability of the training by ensuring that the input features have
similar scales.

A custom sequence generator was implemented to prepare
the data for training. This generator creates sequences of
nine consecutive images for each camera, with corresponding
irradiance measurements, timestamps, and camera coordinates.
Each sequence represents a 45-minute time window selected
based on the observed average time for cloud movement from
the edge to the center of the sky image. The target value for
the prediction is the irradiance at the center position (0.0) 15
minutes in the future, which corresponds to the third image
ahead of the input sequence.

The decision to use a 45-minute input sequence with a 15-
minute forecast horizon was guided by the dynamic character-
istics of cloud movement within the synthetic data set. In the
simulations, wind speeds vary daily and throughout the day.
However, the 45-minute window has been shown to capture the
predominant cloud movement patterns and allows the model
to learn the relationship between cloud dynamics and solar
irradiance variations.

The selection of these parameters was aimed at enabling a
meaningful performance analysis. Future research using real
data, which is currently unavailable due to a lack of databases
of sky images from multiple locations, will investigate the
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is set to five minutes and provides sufficient data granularity for 
short-term forecast models. Shorter intervals, e.g. one minute, can 
be configured if required to capture rapid changes in cloud cover. 

The simulated area spans 50 x 50 km, with cameras strategi-
cally placed in the center and four surrounding cameras placed 5 
km away in different directions to capture different cloud perspec-
tives, as shown in Figure 3. Each camera is accompanied by light 
sensors that provide reference irradiance measurements to ensure 
that the image features match the irradiance data. 

The database is publicly accessible via the Kaggle platform 
[22], facilitating data sharing and collaboration between research-
ers. The published dataset contains extensive metadata and a total 
size of 5.1 GB, providing a rich resource for model training and 
validation. 

This simulation framework forms the basis for the develop-
ment of advanced models for short-term solar irradiance forecast-
ing. By incorporating multiple perspectives and different weather 
conditions, the model can more accurately predict cloud-related 
variations in solar irradiance, supporting more reliable and efficient 
photovoltaic power generation on a regional scale. 

B. Architecture Of The Neural Network 
The development and training of the neural network model for 

the short-term prediction of solar irradiance was performed with 
Google Colab, using an L4 GPU for efficient parallel processing. 
Google Colab provides a cloud-based environment that simplifies 
access to computational resources without the need for extensive 
local infrastructure. This platform was chosen for its flexibility, 
ease of collaboration, and support for GPU-accelerated machine 
learning workflows. 

The synthetic dataset used to train the model includes 340 days 
of data, with measurements taken every five minutes between 6:00 
am and 6:00 pm. For each of the five simulated camera locations, 
the database contains hemispheric sky images together with cor-
responding measurements of available solar radiation. This setup 
provides a diverse and dynamic dataset that reflects varying mete-
orological conditions on different days and at different times. As 
illustrated in Figure 4, the solar irradiance levels for five different 
locations are shown for two randomly selected days, providing in-
sight into the temporal variations in solar radiation under different 
meteorological conditions. 

Prior to training, the data was pre-processed to improve the 
performance of the model. The pre-processing steps included nor-
malizing the irradiance values and temporal features to standard-
ize the input distribution. Normalization is crucial to accelerate the 
convergence of the model and improve the stability of the training 
by ensuring that the input features have similar scales. 

A custom sequence generator was implemented to prepare 
the data for training. This generator creates sequences of nine 
consecutive images for each camera, with corresponding irradi-
ance measurements, timestamps, and camera coordinates. Each 
sequence represents a 45-minute time window selected based on 
the observed average time for cloud movement from the edge to 
the center of the sky image. The target value for the prediction 
is the irradiance at the center position (0.0) 15 minutes in the 
future, which corresponds to the third image ahead of the input 
sequence. 

The decision to use a 45-minute input sequence with a 15- 
minute forecast horizon was guided by the dynamic characteristics 
of cloud movement within the synthetic data set. In the simula-
tions, wind speeds vary daily and throughout the day. However, 
the 45-minute window has been shown to capture the predominant 

cloud movement patterns and allows the model to learn the rela-
tionship between cloud dynamics and solar irradiance variations.

 Fig. 4. Measured solar irradiance at five simulated locations on Day 266 
(top) and Day 124 (bottom). Each curve represents irradiance values 
recorded by a dedicated irradiance module colocated with one of the five 
virtual sky cameras positioned at coordinates (0, 0), (±5000, 0), and (0, 
±5000).

The selection of these parameters was aimed at enabling a 
meaningful performance analysis. Future research using real 
data, which is currently unavailable due to a lack of databases of 
sky images from multiple locations, will investigate the optimal 
length of input sequences and forecast horizons for regional solar 
forecasting. 

The neural network model developed for this study was de-
signed for short-term solar irradiance forecasting using data from 
multiple sky cameras together with numerical weather informa-
tion. The architecture integrates convolutional neural networks 
(CNNs) for image processing and fully connected layers for nu-
merical data, allowing the model to capture spatial cloud patterns 
and their relationship to solar radiation. 

As illustrated in Figure 5, the model accepts two different in-
puts: The first input consists of time-sequenced images from five 
cameras, one central reference camera, and four peripheral cam-
eras positioned around it. These images capture cloud movements 
and atmospheric conditions that influence solar irradiance. The 
second input comprises the corresponding meteorological param-
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Fig. 4. Measured solar irradiance at five simulated locations on Day 266
(top) and Day 124 (bottom). Each curve represents irradiance values recorded
by a dedicated irradiance module colocated with one of the five virtual sky
cameras positioned at coordinates (0, 0), (±5000, 0), and (0, ±5000).

optimal length of input sequences and forecast horizons for
regional solar forecasting.

The neural network model developed for this study was
designed for short-term solar irradiance forecasting using data
from multiple sky cameras together with numerical weather
information. The architecture integrates convolutional neural
networks (CNNs) for image processing and fully connected
layers for numerical data, allowing the model to capture spatial
cloud patterns and their relationship to solar radiation.

As illustrated in Figure 5, the model accepts two different
inputs: The first input consists of time-sequenced images from
five cameras, one central reference camera, and four peripheral
cameras positioned around it. These images capture cloud
movements and atmospheric conditions that influence solar
irradiance. The second input comprises the corresponding me-
teorological parameters, such as irradiance and cloud-related
features, for the same time intervals.

The image processing branch uses a TimeDistributed Con-
volutional Neural Network (CNN) to extract spatial features
from the sky images over the nine time steps. The network
consists of:

Fig. 5. Neural network architecture for regional solar forecasting.

• A series of three convolutional layers with filter sizes
of 16, 32, and 64, each using a 3x3 kernel and ReLU
activation

• Batch normalization layers after each convolutional layer
• Max-pooling layers to reduce spatial dimensions and

retain essential features
• TimeDistributed flattening and dense layers to capture

temporal dependencies
• A final dense layer with 256 units to combine the

extracted features across all time steps
The numerical data stream processes a feature set consisting

of the capture time and coordinates for each camera. This data
stream passes through:

• An initial flattening layer
• Two dense layers with 64 units each and ReLU activation
• Dropout layers with a dropout rate of 20 to prevent

overfitting
The outputs of the two branches are concatenated into a

combined feature vector that is further processed by:
• A dense layer with 256 units and ReLU activation
• A dropout layer with a dropout rate of 30
• Additional dense layers with 128 and 64 units
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eters, such as irradiance and cloud-related features, for the same 
time intervals. 

Fig. 5. Neural network architecture for regional solar forecasting.

The image processing branch uses a TimeDistributed Convo-
lutional Neural Network (CNN) to extract spatial features from the 
sky images over the nine time steps. The network consists of:  

• A series of three convolutional layers with filter sizes of 16, 
32, and 64, each using a 3x3 kernel and ReLU activation 

• Batch normalization layers after each convolutional layer 

• Max-pooling layers to reduce spatial dimensions and re-
tain essential features 

• TimeDistributed flattening and dense layers to capture 
temporal dependencies 

• A final dense layer with 256 units to combine the extracted 
features across all time steps 

The numerical data stream processes a feature set consisting of 
the capture time and coordinates for each camera. This data stream 
passes through: 

• An initial flattening layer 

• Two dense layers with 64 units each and ReLU activation 

• Dropout layers with a dropout rate of 20 to prevent 
overfitting

The outputs of the two branches are concatenated into a combi-

ned feature vector that is further processed by: 

• A dense layer with 256 units and ReLU activation 

• A dropout layer with a dropout rate of 30 

• Additional dense layers with 128 and 64 units 

• A final dense layer with a linear activation function to pre-
dict the future solar irradiance value 

The model was compiled with the Adam optimizer, mean 
squared error (MSE) as the loss function, and a custom R² met-
ric for performance evaluation. The training was performed with a 
batch size of 32 over 50 epochs. 

The dataset was split into training (80%), validation (10%), 
and test subsets (10%). During training, the model was exposed 
to a diverse range of cloud patterns and atmospheric conditions to 
improve its predictive capabilities for unseen data. 

To improve generalization and prevent overfitting, the training 
process employed early stopping with a patience of 10 epochs and 
model checkpointing, ensuring the retention of the best-perform-
ing model based on validation loss. The model includes a total of 
566,097 trainable parameters. 

Figure 6 shows the training and validation loss curves along 
with the validation R2 score throughout the 50 training epochs for 
scenario c) Camera-Free Target Location. The plot indicates stable 
convergence of the training loss, while fluctuations in the valida-
tion R2 metric reflect the challenging nature of the scenario, where 
no direct camera data from the target location is available. 

Fig. 6. Training and validation loss (MSE) and validation R2 score per 
epoch for scenario c) Camera-Free Target Location.

IV. Analysis of Model Accuracy in Regional 
Solar Forecasting 

To evaluate the performance and feasibility of the developed 
model for regional solar forecasting, three different scenarios were 
designed, as illustrated in Figure 7. Each scenario explores different 
configurations of camera input data to evaluate the impact of dif-
ferent perspectives on forecasting accuracy and to investigate the 
potential of predicting solar irradiance for unmonitored locations. 

In the first scenario (see Figure 7a), the model uses only the 
data from the central camera positioned at coordinates (0,0) to 
predict future solar irradiance at the same location. This scenario 
serves as a reference point against which the performance of the 
other scenarios can be compared. Since only a single camera is 
used, the model relies solely on the cloud movement patterns ob-
served from this single viewpoint. 

The second scenario (see Figure 7b) adds additional informa-
tion by including the images from the four peripheral cameras at 
(5000,0), (-5000,0), (0,5000), and (0,-5000) meters in addition to 
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Fig. 4. Measured solar irradiance at five simulated locations on Day 266
(top) and Day 124 (bottom). Each curve represents irradiance values recorded
by a dedicated irradiance module colocated with one of the five virtual sky
cameras positioned at coordinates (0, 0), (±5000, 0), and (0, ±5000).

optimal length of input sequences and forecast horizons for
regional solar forecasting.

The neural network model developed for this study was
designed for short-term solar irradiance forecasting using data
from multiple sky cameras together with numerical weather
information. The architecture integrates convolutional neural
networks (CNNs) for image processing and fully connected
layers for numerical data, allowing the model to capture spatial
cloud patterns and their relationship to solar radiation.

As illustrated in Figure 5, the model accepts two different
inputs: The first input consists of time-sequenced images from
five cameras, one central reference camera, and four peripheral
cameras positioned around it. These images capture cloud
movements and atmospheric conditions that influence solar
irradiance. The second input comprises the corresponding me-
teorological parameters, such as irradiance and cloud-related
features, for the same time intervals.

The image processing branch uses a TimeDistributed Con-
volutional Neural Network (CNN) to extract spatial features
from the sky images over the nine time steps. The network
consists of:

Fig. 5. Neural network architecture for regional solar forecasting.

• A series of three convolutional layers with filter sizes
of 16, 32, and 64, each using a 3x3 kernel and ReLU
activation

• Batch normalization layers after each convolutional layer
• Max-pooling layers to reduce spatial dimensions and

retain essential features
• TimeDistributed flattening and dense layers to capture

temporal dependencies
• A final dense layer with 256 units to combine the

extracted features across all time steps
The numerical data stream processes a feature set consisting

of the capture time and coordinates for each camera. This data
stream passes through:

• An initial flattening layer
• Two dense layers with 64 units each and ReLU activation
• Dropout layers with a dropout rate of 20 to prevent

overfitting
The outputs of the two branches are concatenated into a

combined feature vector that is further processed by:
• A dense layer with 256 units and ReLU activation
• A dropout layer with a dropout rate of 30
• Additional dense layers with 128 and 64 units
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• A final dense layer with a linear activation function to
predict the future solar irradiance value

The model was compiled with the Adam optimizer, mean
squared error (MSE) as the loss function, and a custom R²
metric for performance evaluation. The training was performed
with a batch size of 32 over 50 epochs.

The dataset was split into training (80%), validation (10%),
and test subsets (10%). During training, the model was ex-
posed to a diverse range of cloud patterns and atmospheric
conditions to improve its predictive capabilities for unseen
data.

To improve generalization and prevent overfitting, the train-
ing process employed early stopping with a patience of 10
epochs and model checkpointing, ensuring the retention of the
best-performing model based on validation loss. The model
includes a total of 566,097 trainable parameters.

Figure 6 shows the training and validation loss curves
along with the validation R2 score throughout the 50 training
epochs for scenario c) Camera-Free Target Location. The
plot indicates stable convergence of the training loss, while
fluctuations in the validation R2 metric reflect the challenging
nature of the scenario, where no direct camera data from the
target location is available.

Fig. 6. Training and validation loss (MSE) and validation R2 score per epoch
for scenario c) Camera-Free Target Location.

IV. ANALYSIS OF MODEL ACCURACY IN REGIONAL
SOLAR FORECASTING

To evaluate the performance and feasibility of the developed
model for regional solar forecasting, three different scenarios
were designed, as illustrated in Figure 7. Each scenario ex-
plores different configurations of camera input data to evaluate
the impact of different perspectives on forecasting accuracy
and to investigate the potential of predicting solar irradiance
for unmonitored locations.

In the first scenario (see Figure 7a), the model uses only
the data from the central camera positioned at coordinates
(0,0) to predict future solar irradiance at the same location.
This scenario serves as a reference point against which the
performance of the other scenarios can be compared. Since
only a single camera is used, the model relies solely on the
cloud movement patterns observed from this single viewpoint.

The second scenario (see Figure 7b) adds additional in-
formation by including the images from the four peripheral

Fig. 7. Evaluation scenarios for model performance. a) Single-Camera
Scenario, b) Multi-Camera Scenario, c) Camera-Free Target Location.

cameras at (5000,0), (-5000,0), (0,5000), and (0,-5000) meters
in addition to the data from the central camera. This config-
uration aims to determine whether the inclusion of multiple
viewpoints can improve prediction accuracy. The peripheral
cameras provide spatial context by capturing cloud motion
from multiple vantage points, allowing the model to better
understand the dynamics of cloud formation, breakup, and
movement in the region.

In the third and final scenario(see Figure 7c), the model
uses only the data from the four peripheral cameras to predict
solar irradiance at the central location (0,0). This scenario
is particularly important as it tests the model’s ability to
estimate solar irradiance for a location where there is no direct
monitoring device. The success of this approach would show
that the model can provide forecasts for locations without
installed cameras and thus support solar forecasting on a
regional scale.

The performance in these three scenarios provides insight
into the benefits of using multiple cameras for short-term solar
irradiance prediction. It also evaluates the model’s ability to
generalize spatial relationships between cloud structures and
irradiance patterns, providing valuable information for opti-
mizing the placement of cameras in real-world applications.

Figures 8, 9 and 10 show the results of the solar radia-
tion forecasts for all three evaluation scenarios. Each figure
compares the actual irradiance available at the target location
with the values predicted by the model. These visualizations
provide a clear understanding of how the model performs
under different input configurations and illustrate the impact
of including multiple cameras on prediction accuracy.

The results show that the model performs satisfactorily in
all three scenarios and effectively captures the relationship be-
tween cloud motion and solar irradiance variations. However,
the differences in the performance metrics reveal the additional
benefits of using multiple camera perspectives.

In the single-camera scenario (Scenario A), using only the
data from the central camera, the model achieved a R2 score
of 0.85. This scenario, illustrated in Figure 8, serves as a
baseline for comparison and indicates that the model is capable
of learning and predicting irradiation patterns to a reasonable
extent even with a single camera. However, the limitations of
using only one camera are obvious, as it provides a limited
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the data from the central camera. This configuration aims to deter-
mine whether the inclusion of multiple viewpoints can improve 
prediction accuracy. The peripheral cameras provide spatial con-
text by capturing cloud motion from multiple vantage points, al-
lowing the model to better understand the dynamics of cloud for-
mation, breakup, and movement in the region. 

Fig. 7. Evaluation scenarios for model performance. a) Single-Camera 
Scenario, b) Multi-Camera Scenario, c) Camera-Free Target Location.

In the third and final scenario (see Figure 7c), the model uses 
only the data from the four peripheral cameras to predict solar ir-
radiance at the central location (0,0). This scenario is particularly 
important as it tests the model’s ability to estimate solar irradiance 
for a location where there is no direct monitoring device. The suc-
cess of this approach would show that the model can provide fore-
casts for locations without installed cameras and thus support solar 
forecasting on a regional scale. 

The performance in these three scenarios provides insight into 
the benefits of using multiple cameras for short-term solar irradi-
ance prediction. It also evaluates the model’s ability to generalize 
spatial relationships between cloud structures and irradiance pat-
terns, providing valuable information for optimizing the placement 
of cameras in real-world applications. 

Figures 8, 9 and 10 show the results of the solar radiation fore-
casts for all three evaluation scenarios. Each figure compares the 
actual irradiance available at the target location with the values 
predicted by the model. These visualizations provide a clear un-
derstanding of how the model performs under different input con-
figurations and illustrate the impact of including multiple cameras 
on prediction accuracy. 

The results show that the model performs satisfactorily in all 
three scenarios and effectively captures the relationship between 
cloud motion and solar irradiance variations. However, the differ-
ences in the performance metrics reveal the additional benefits of 
using multiple camera perspectives. 

In the single-camera scenario (Scenario A), using only the 
data from the central camera, the model achieved a R2 score of 
0.85. This scenario, illustrated in Figure 8, serves as a baseline for 
comparison and indicates that the model is capable of learning and 
predicting irradiation patterns to a reasonable extent even with a 
single camera. However, the limitations of using only one camera 
are obvious, as it provides a limited perspective on cloud motion. 
Without additional viewpoints, the model lacks a comprehensive 
spatial context, leading to occasional discrepancies between the 
predicted and actual values. 

In contrast, the multi-camera scenario (Scenario B), which in-
cludes the images from all five cameras, significantly improves the 
prediction accuracy and leads to a R2 score of 0.87 as shown in 
Figure 9. The additional spatial context provided by the peripheral 
cameras allows the model to better understand cloud dynamics, 

shadow propagation, and irradiance variations. This improve-
ment demonstrates the benefit of multi-camera configurations as 
they allow the model to generalize more effectively across dif-
ferent weather conditions and improve short-term forecasting 
capabilities. 

Fig. 8. Predicted and actual solar irradiance values for the single-camera 
cenario (Scenario A) on Day 52. Only data from the central camera at 
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera 
scenario (Scenario B) on Day 52. The model utilizes image data from 
five spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free 
target location scenario (Scenario C) on Day 52. In this setup, the model 
predicts irradiance at the central location (0, 0) using only images from 
the four peripheral cameras.

The most critical test is the camera-free target location sce-
nario (Scenario C), where the model predicts solar irradiance at 
the central location without using direct images from that point. 
In this case, the model relies solely on the four peripheral cam-
eras to determine the irradiance at the target location. Despite the 
absence of a direct monitoring device, the model still achieves a 
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• A final dense layer with a linear activation function to
predict the future solar irradiance value

The model was compiled with the Adam optimizer, mean
squared error (MSE) as the loss function, and a custom R²
metric for performance evaluation. The training was performed
with a batch size of 32 over 50 epochs.

The dataset was split into training (80%), validation (10%),
and test subsets (10%). During training, the model was ex-
posed to a diverse range of cloud patterns and atmospheric
conditions to improve its predictive capabilities for unseen
data.

To improve generalization and prevent overfitting, the train-
ing process employed early stopping with a patience of 10
epochs and model checkpointing, ensuring the retention of the
best-performing model based on validation loss. The model
includes a total of 566,097 trainable parameters.

Figure 6 shows the training and validation loss curves
along with the validation R2 score throughout the 50 training
epochs for scenario c) Camera-Free Target Location. The
plot indicates stable convergence of the training loss, while
fluctuations in the validation R2 metric reflect the challenging
nature of the scenario, where no direct camera data from the
target location is available.

Fig. 6. Training and validation loss (MSE) and validation R2 score per epoch
for scenario c) Camera-Free Target Location.

IV. ANALYSIS OF MODEL ACCURACY IN REGIONAL
SOLAR FORECASTING

To evaluate the performance and feasibility of the developed
model for regional solar forecasting, three different scenarios
were designed, as illustrated in Figure 7. Each scenario ex-
plores different configurations of camera input data to evaluate
the impact of different perspectives on forecasting accuracy
and to investigate the potential of predicting solar irradiance
for unmonitored locations.

In the first scenario (see Figure 7a), the model uses only
the data from the central camera positioned at coordinates
(0,0) to predict future solar irradiance at the same location.
This scenario serves as a reference point against which the
performance of the other scenarios can be compared. Since
only a single camera is used, the model relies solely on the
cloud movement patterns observed from this single viewpoint.

The second scenario (see Figure 7b) adds additional in-
formation by including the images from the four peripheral

Fig. 7. Evaluation scenarios for model performance. a) Single-Camera
Scenario, b) Multi-Camera Scenario, c) Camera-Free Target Location.

cameras at (5000,0), (-5000,0), (0,5000), and (0,-5000) meters
in addition to the data from the central camera. This config-
uration aims to determine whether the inclusion of multiple
viewpoints can improve prediction accuracy. The peripheral
cameras provide spatial context by capturing cloud motion
from multiple vantage points, allowing the model to better
understand the dynamics of cloud formation, breakup, and
movement in the region.

In the third and final scenario(see Figure 7c), the model
uses only the data from the four peripheral cameras to predict
solar irradiance at the central location (0,0). This scenario
is particularly important as it tests the model’s ability to
estimate solar irradiance for a location where there is no direct
monitoring device. The success of this approach would show
that the model can provide forecasts for locations without
installed cameras and thus support solar forecasting on a
regional scale.

The performance in these three scenarios provides insight
into the benefits of using multiple cameras for short-term solar
irradiance prediction. It also evaluates the model’s ability to
generalize spatial relationships between cloud structures and
irradiance patterns, providing valuable information for opti-
mizing the placement of cameras in real-world applications.

Figures 8, 9 and 10 show the results of the solar radia-
tion forecasts for all three evaluation scenarios. Each figure
compares the actual irradiance available at the target location
with the values predicted by the model. These visualizations
provide a clear understanding of how the model performs
under different input configurations and illustrate the impact
of including multiple cameras on prediction accuracy.

The results show that the model performs satisfactorily in
all three scenarios and effectively captures the relationship be-
tween cloud motion and solar irradiance variations. However,
the differences in the performance metrics reveal the additional
benefits of using multiple camera perspectives.

In the single-camera scenario (Scenario A), using only the
data from the central camera, the model achieved a R2 score
of 0.85. This scenario, illustrated in Figure 8, serves as a
baseline for comparison and indicates that the model is capable
of learning and predicting irradiation patterns to a reasonable
extent even with a single camera. However, the limitations of
using only one camera are obvious, as it provides a limited
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Fig. 8. Predicted and actual solar irradiance values for the single-camera
scenario (Scenario A) on Day 52. Only data from the central camera at
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera
scenario (Scenario B) on Day 52. The model utilizes image data from five
spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free
target location scenario (Scenario C) on Day 52. In this setup, the model
predicts irradiance at the central location (0, 0) using only images from the
four peripheral cameras.

perspective on cloud motion. Without additional viewpoints,
the model lacks a comprehensive spatial context, leading to
occasional discrepancies between the predicted and actual
values.

In contrast, the multi-camera scenario (Scenario B), which
includes the images from all five cameras, significantly im-
proves the prediction accuracy and leads to a R2 score of
0.87 as shown in Figure 9. The additional spatial context

provided by the peripheral cameras allows the model to better
understand cloud dynamics, shadow propagation, and irradi-
ance variations. This improvement demonstrates the benefit
of multi-camera configurations as they allow the model to
generalize more effectively across different weather conditions
and improve short-term forecasting capabilities.

The most critical test is the camera-free target location
scenario (Scenario C), where the model predicts solar irradi-
ance at the central location without using direct images from
that point. In this case, the model relies solely on the four
peripheral cameras to determine the irradiance at the target
location. Despite the absence of a direct monitoring device,
the model still achieves a R2 score of 0.76 as is evident
from Figure 10., confirming that spatially distributed obser-
vations can successfully estimate irradiance for unmonitored
areas. Although the performance is slightly lower compared to
Scenario A and Scenario B, the results indicate that regional
solar forecasting is feasible even if cameras are not installed
at every location of interest.

Table I summarizes the R2 performance metrics for all three
scenarios shown in Figures 8–10. The single-camera scenario
(a) serves as a baseline, while the multi-camera configuration
(b) shows improved accuracy due to spatially enriched input.
The third scenario (c) still achieves satisfactory prediction
performance despite the exclusive use of peripheral cameras,
which supports the applicability of the model in cases where
direct sky images of the target location are not available.

TABLE I
PREDICTION PERFORMANCE ACROSS DIFFERENT FORECASTING

SCENARIOS.

Scenario Description R2 Score

a) Single-Camera Scenario Only central
camera 0.848

b) Multi-Camera Scenario Central + four
peripheral cameras 0.872

c) Camera-Free Target Location Only four
peripheral cameras 0.761

It is important to recognize the limitations associated with
using a purely synthetic dataset for this study. While the Unity
simulation framework allows for controlled experiments and
rapid generation of different scenarios, it inevitably simplifies
the complexity of real atmospheric physics. Factors such as
unpredictable, rapid weather changes beyond the simulated
patterns, variations in aerosol concentration, subtle cloud for-
mations (e.g. thin cirrus clouds), and potential sensor noise or
calibration issues with physical cameras are not fully captured
by the current synthetic data. While the presented results show
the potential and feasibility of the multi-camera approach
for regional forecasting, the achieved performance metrics
(R2 values) should be interpreted as an upper-bound estimate
under idealized conditions. Future work will focus on the
validation of this model using real data. It is planned to set
up a physical network of sky cameras in the target region to
collect real images and irradiance measurements. This real-
world data set will be crucial to thoroughly evaluate the
practical performance, robustness, and generalizability of the
model. It will allow the necessary fine-tuning and adjustment
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Fig. 8. Predicted and actual solar irradiance values for the single-camera
scenario (Scenario A) on Day 52. Only data from the central camera at
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera
scenario (Scenario B) on Day 52. The model utilizes image data from five
spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free
target location scenario (Scenario C) on Day 52. In this setup, the model
predicts irradiance at the central location (0, 0) using only images from the
four peripheral cameras.

perspective on cloud motion. Without additional viewpoints,
the model lacks a comprehensive spatial context, leading to
occasional discrepancies between the predicted and actual
values.

In contrast, the multi-camera scenario (Scenario B), which
includes the images from all five cameras, significantly im-
proves the prediction accuracy and leads to a R2 score of
0.87 as shown in Figure 9. The additional spatial context

provided by the peripheral cameras allows the model to better
understand cloud dynamics, shadow propagation, and irradi-
ance variations. This improvement demonstrates the benefit
of multi-camera configurations as they allow the model to
generalize more effectively across different weather conditions
and improve short-term forecasting capabilities.

The most critical test is the camera-free target location
scenario (Scenario C), where the model predicts solar irradi-
ance at the central location without using direct images from
that point. In this case, the model relies solely on the four
peripheral cameras to determine the irradiance at the target
location. Despite the absence of a direct monitoring device,
the model still achieves a R2 score of 0.76 as is evident
from Figure 10., confirming that spatially distributed obser-
vations can successfully estimate irradiance for unmonitored
areas. Although the performance is slightly lower compared to
Scenario A and Scenario B, the results indicate that regional
solar forecasting is feasible even if cameras are not installed
at every location of interest.

Table I summarizes the R2 performance metrics for all three
scenarios shown in Figures 8–10. The single-camera scenario
(a) serves as a baseline, while the multi-camera configuration
(b) shows improved accuracy due to spatially enriched input.
The third scenario (c) still achieves satisfactory prediction
performance despite the exclusive use of peripheral cameras,
which supports the applicability of the model in cases where
direct sky images of the target location are not available.

TABLE I
PREDICTION PERFORMANCE ACROSS DIFFERENT FORECASTING

SCENARIOS.

Scenario Description R2 Score

a) Single-Camera Scenario Only central
camera 0.848

b) Multi-Camera Scenario Central + four
peripheral cameras 0.872

c) Camera-Free Target Location Only four
peripheral cameras 0.761

It is important to recognize the limitations associated with
using a purely synthetic dataset for this study. While the Unity
simulation framework allows for controlled experiments and
rapid generation of different scenarios, it inevitably simplifies
the complexity of real atmospheric physics. Factors such as
unpredictable, rapid weather changes beyond the simulated
patterns, variations in aerosol concentration, subtle cloud for-
mations (e.g. thin cirrus clouds), and potential sensor noise or
calibration issues with physical cameras are not fully captured
by the current synthetic data. While the presented results show
the potential and feasibility of the multi-camera approach
for regional forecasting, the achieved performance metrics
(R2 values) should be interpreted as an upper-bound estimate
under idealized conditions. Future work will focus on the
validation of this model using real data. It is planned to set
up a physical network of sky cameras in the target region to
collect real images and irradiance measurements. This real-
world data set will be crucial to thoroughly evaluate the
practical performance, robustness, and generalizability of the
model. It will allow the necessary fine-tuning and adjustment
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Fig. 8. Predicted and actual solar irradiance values for the single-camera
scenario (Scenario A) on Day 52. Only data from the central camera at
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera
scenario (Scenario B) on Day 52. The model utilizes image data from five
spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free
target location scenario (Scenario C) on Day 52. In this setup, the model
predicts irradiance at the central location (0, 0) using only images from the
four peripheral cameras.
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occasional discrepancies between the predicted and actual
values.

In contrast, the multi-camera scenario (Scenario B), which
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proves the prediction accuracy and leads to a R2 score of
0.87 as shown in Figure 9. The additional spatial context

provided by the peripheral cameras allows the model to better
understand cloud dynamics, shadow propagation, and irradi-
ance variations. This improvement demonstrates the benefit
of multi-camera configurations as they allow the model to
generalize more effectively across different weather conditions
and improve short-term forecasting capabilities.

The most critical test is the camera-free target location
scenario (Scenario C), where the model predicts solar irradi-
ance at the central location without using direct images from
that point. In this case, the model relies solely on the four
peripheral cameras to determine the irradiance at the target
location. Despite the absence of a direct monitoring device,
the model still achieves a R2 score of 0.76 as is evident
from Figure 10., confirming that spatially distributed obser-
vations can successfully estimate irradiance for unmonitored
areas. Although the performance is slightly lower compared to
Scenario A and Scenario B, the results indicate that regional
solar forecasting is feasible even if cameras are not installed
at every location of interest.

Table I summarizes the R2 performance metrics for all three
scenarios shown in Figures 8–10. The single-camera scenario
(a) serves as a baseline, while the multi-camera configuration
(b) shows improved accuracy due to spatially enriched input.
The third scenario (c) still achieves satisfactory prediction
performance despite the exclusive use of peripheral cameras,
which supports the applicability of the model in cases where
direct sky images of the target location are not available.
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b) Multi-Camera Scenario Central + four
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c) Camera-Free Target Location Only four
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It is important to recognize the limitations associated with
using a purely synthetic dataset for this study. While the Unity
simulation framework allows for controlled experiments and
rapid generation of different scenarios, it inevitably simplifies
the complexity of real atmospheric physics. Factors such as
unpredictable, rapid weather changes beyond the simulated
patterns, variations in aerosol concentration, subtle cloud for-
mations (e.g. thin cirrus clouds), and potential sensor noise or
calibration issues with physical cameras are not fully captured
by the current synthetic data. While the presented results show
the potential and feasibility of the multi-camera approach
for regional forecasting, the achieved performance metrics
(R2 values) should be interpreted as an upper-bound estimate
under idealized conditions. Future work will focus on the
validation of this model using real data. It is planned to set
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collect real images and irradiance measurements. This real-
world data set will be crucial to thoroughly evaluate the
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R2 score of 0.76 as is evident from Figure 10., confirming that 
spatially distributed observations can successfully estimate irradi-
ance for unmonitored areas. Although the performance is slightly 
lower compared to Scenario A and Scenario B, the results indicate 
that regional solar forecasting is feasible even if cameras are not 
installed at every location of interest. 

Table I summarizes the R2 performance metrics for all three 
scenarios shown in Figures 8–10. The single-camera scenario 
(a) serves as a baseline, while the multi-camera configuration (b) 
shows improved accuracy due to spatially enriched input. The third 
scenario (c) still achieves satisfactory prediction performance de-
spite the exclusive use of peripheral cameras, which supports the 
applicability of the model in cases where direct sky images of the 
target location are not available. 

Table I 

Prediction Performance across Different Forecasting 
Scenarios. 

It is important to recognize the limitations associated with 
using a purely synthetic dataset for this study. While the Unity 
simulation framework allows for controlled experiments and rapid 
generation of different scenarios, it inevitably simplifies the com-
plexity of real atmospheric physics. Factors such as unpredictable, 
rapid weather changes beyond the simulated patterns, variations 
in aerosol concentration, subtle cloud formations (e.g. thin cirrus 
clouds), and potential sensor noise or calibration issues with physi-
cal cameras are not fully captured by the current synthetic data. 
While the presented results show the potential and feasibility of 
the multi-camera approach for regional forecasting, the achieved 
performance metrics (R2 values) should be interpreted as an upper-
bound estimate under idealized conditions. Future work will focus 
on the  validation of this model using real data. It is planned to set 
up a physical network of sky cameras in the target region to collect 
real images and irradiance measurements. This realworld data set 
will be crucial to thoroughly evaluate the practical performance, 
robustness, and generalizability of the model. It will allow the nec-
essary fine-tuning and adjustment to account for the inherent sto-
chasticity and complexity of actual atmospheric conditions. 

In addition to evaluating the forecasting accuracy, the practical 
feasibility of deploying a multi-camera system must also consider 
the cost of individual units. The proposed camera modules were 
designed using low-cost, off-the-shelf components with the goal 
of supporting scalable deployment. Table II summarizes the hard-
ware components and their associated costs, with the total price of 
one complete unit remaining below C60. This cost-effective con-
figuration, based on opensource platforms and simple solar power 
integration, makes the system suitable for distributed implemen-
tations in both research and real-world settings. The affordability 
and modularity of the setup support its application in community 
monitoring, smart grid demonstrations, and large-scale regional 
deployments. 

Table Ii 

Component Cost Breakdown for f Single Sky Camera Unit 

(2023). 

 V. Conclusion 
The growing adoption of photovoltaic (PV) systems in mod-

ern energy grids presents both opportunities and challenges, par-
ticularly with regard to the variability of solar energy production. 
Accurate short-term forecasting of solar irradiance plays a crucial 
role in ensuring stable and efficient grid operation. This paper dem-
onstrates the potential of using a synthetic database in combination 
with a machine learning model to overcome these challenges by 
analyzing cloud dynamics using multiple sky cameras. 

The synthetic database developed in this study provides a 
controlled environment for testing different model configurations, 
weather conditions, and data structures. This flexibility allows sys-
tematic experimentation with different parameters to analyze the 
potential for regional solar irradiance forecasting. By using images 
from multiple cameras strategically distributed across the moni-
tored region, the model can detect patterns in cloud movement 
and shadow dynamics. The results show that the use of multiple 
cameras significantly improves forecasting accuracy compared to 
a single-camera setup. 

The performance evaluation across the three defined scenarios 
confirms that multiple perspectives contribute to more accurate 
predictions, not only for locations with installed cameras but also 
for locations without direct visual input. The model has success-
fully demonstrated that it is able to predict solar irradiance at the 
central target location using only the data from the peripheral cam-
eras. This finding highlights the potential of a distributed camera 
network to support regional solar forecasting without the need for 
a dense sensor installation. 

The results show that using multiple cameras gives the model 
a more detailed understanding of cloud dynamics, which in turn 
improves forecast accuracy. By capturing cloud movement from 
different angles, the model gains insight into shadow behavior 
and irradiance variations. This capability is particularly use-
ful for forecasting production at locations without direct camera 
measurements. 

In addition, the synthetic database supports the simulation of 
camera placements in real regions, enabling the development of 
optimal configurations for specific locations. This approach makes 
it possible to train the model in a synthetic environment and then 
reconcile it with real data. As the synthetic database can be created 
much faster than collecting real data (in minutes rather than days) 
it provides a practical and efficient solution for testing different 
configurations. Once the model has been trained in this flexible en-
vironment, it captures the dependencies between cloud movement 
and shadow formation, reducing the amount of real data needed to 
fine-tune it to the actual meteorological conditions at the selected 
location. 
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Fig. 8. Predicted and actual solar irradiance values for the single-camera
scenario (Scenario A) on Day 52. Only data from the central camera at
position (0, 0) were used for prediction.

Fig. 9. Predicted and actual solar irradiance values for the multi-camera
scenario (Scenario B) on Day 52. The model utilizes image data from five
spatially distributed cameras to generate predictions.

Fig. 10. Predicted and actual solar irradiance values for the camera-free
target location scenario (Scenario C) on Day 52. In this setup, the model
predicts irradiance at the central location (0, 0) using only images from the
four peripheral cameras.

perspective on cloud motion. Without additional viewpoints,
the model lacks a comprehensive spatial context, leading to
occasional discrepancies between the predicted and actual
values.

In contrast, the multi-camera scenario (Scenario B), which
includes the images from all five cameras, significantly im-
proves the prediction accuracy and leads to a R2 score of
0.87 as shown in Figure 9. The additional spatial context

provided by the peripheral cameras allows the model to better
understand cloud dynamics, shadow propagation, and irradi-
ance variations. This improvement demonstrates the benefit
of multi-camera configurations as they allow the model to
generalize more effectively across different weather conditions
and improve short-term forecasting capabilities.

The most critical test is the camera-free target location
scenario (Scenario C), where the model predicts solar irradi-
ance at the central location without using direct images from
that point. In this case, the model relies solely on the four
peripheral cameras to determine the irradiance at the target
location. Despite the absence of a direct monitoring device,
the model still achieves a R2 score of 0.76 as is evident
from Figure 10., confirming that spatially distributed obser-
vations can successfully estimate irradiance for unmonitored
areas. Although the performance is slightly lower compared to
Scenario A and Scenario B, the results indicate that regional
solar forecasting is feasible even if cameras are not installed
at every location of interest.

Table I summarizes the R2 performance metrics for all three
scenarios shown in Figures 8–10. The single-camera scenario
(a) serves as a baseline, while the multi-camera configuration
(b) shows improved accuracy due to spatially enriched input.
The third scenario (c) still achieves satisfactory prediction
performance despite the exclusive use of peripheral cameras,
which supports the applicability of the model in cases where
direct sky images of the target location are not available.

TABLE I
PREDICTION PERFORMANCE ACROSS DIFFERENT FORECASTING

SCENARIOS.

Scenario Description R2 Score

a) Single-Camera Scenario Only central
camera 0.848

b) Multi-Camera Scenario Central + four
peripheral cameras 0.872

c) Camera-Free Target Location Only four
peripheral cameras 0.761

It is important to recognize the limitations associated with
using a purely synthetic dataset for this study. While the Unity
simulation framework allows for controlled experiments and
rapid generation of different scenarios, it inevitably simplifies
the complexity of real atmospheric physics. Factors such as
unpredictable, rapid weather changes beyond the simulated
patterns, variations in aerosol concentration, subtle cloud for-
mations (e.g. thin cirrus clouds), and potential sensor noise or
calibration issues with physical cameras are not fully captured
by the current synthetic data. While the presented results show
the potential and feasibility of the multi-camera approach
for regional forecasting, the achieved performance metrics
(R2 values) should be interpreted as an upper-bound estimate
under idealized conditions. Future work will focus on the
validation of this model using real data. It is planned to set
up a physical network of sky cameras in the target region to
collect real images and irradiance measurements. This real-
world data set will be crucial to thoroughly evaluate the
practical performance, robustness, and generalizability of the
model. It will allow the necessary fine-tuning and adjustment
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to account for the inherent stochasticity and complexity of
actual atmospheric conditions.

In addition to evaluating the forecasting accuracy, the prac-
tical feasibility of deploying a multi-camera system must also
consider the cost of individual units. The proposed camera
modules were designed using low-cost, off-the-shelf compo-
nents with the goal of supporting scalable deployment. Table II
summarizes the hardware components and their associated
costs, with the total price of one complete unit remaining
below C60. This cost-effective configuration, based on open-
source platforms and simple solar power integration, makes
the system suitable for distributed implementations in both
research and real-world settings. The affordability and modu-
larity of the setup support its application in community mon-
itoring, smart grid demonstrations, and large-scale regional
deployments.

TABLE II
COMPONENT COST BREAKDOWN FOR A SINGLE SKY CAMERA UNIT

(2023).

Component Description Price [C]

Raspberry Pi Camera Wide-angle camera
compatible with Raspberry Pi 18.32

Raspberry Pi Zero W Mini computer
(single-board) 27.50

Small Solar Panel 5V, 0.125 W
(45 × 25 mm) 1.59

INA219 Module Current and voltage
measurement module 7.30

3D-Printed Housing Protective enclosure 0.89
Mounting Clamp For camera mounting 1.31

Total 56.91

V. CONCLUSION

The growing adoption of photovoltaic (PV) systems in modern
energy grids presents both opportunities and challenges, partic-
ularly with regard to the variability of solar energy production.
Accurate short-term forecasting of solar irradiance plays a
crucial role in ensuring stable and efficient grid operation. This
paper demonstrates the potential of using a synthetic database
in combination with a machine learning model to overcome
these challenges by analyzing cloud dynamics using multiple
sky cameras.

The synthetic database developed in this study provides a
controlled environment for testing different model configura-
tions, weather conditions, and data structures. This flexibility
allows systematic experimentation with different parameters
to analyze the potential for regional solar irradiance fore-
casting. By using images from multiple cameras strategically
distributed across the monitored region, the model can detect
patterns in cloud movement and shadow dynamics. The results
show that the use of multiple cameras significantly improves
forecasting accuracy compared to a single-camera setup.

The performance evaluation across the three defined sce-
narios confirms that multiple perspectives contribute to more
accurate predictions, not only for locations with installed
cameras but also for locations without direct visual input.
The model has successfully demonstrated that it is able to
predict solar irradiance at the central target location using only

the data from the peripheral cameras. This finding highlights
the potential of a distributed camera network to support
regional solar forecasting without the need for a dense sensor
installation.

The results show that using multiple cameras gives the
model a more detailed understanding of cloud dynamics,
which in turn improves forecast accuracy. By capturing cloud
movement from different angles, the model gains insight into
shadow behavior and irradiance variations. This capability
is particularly useful for forecasting production at locations
without direct camera measurements.

In addition, the synthetic database supports the simulation of
camera placements in real regions, enabling the development
of optimal configurations for specific locations. This approach
makes it possible to train the model in a synthetic environment
and then reconcile it with real data. As the synthetic database
can be created much faster than collecting real data (in
minutes rather than days) it provides a practical and efficient
solution for testing different configurations. Once the model
has been trained in this flexible environment, it captures the
dependencies between cloud movement and shadow formation,
reducing the amount of real data needed to fine-tune it to the
actual meteorological conditions at the selected location.

This research underlines the importance of flexible, data-
efficient approaches to renewable energy forecasting. The
method presented not only demonstrates the feasibility of
regional predictions of solar irradiance but also highlights the
potential of multi-camera systems for accurate forecasting over
larger areas. By enabling predictions on a regional scale, this
work provides a solid foundation for future advances in solar
energy forecasting and its practical implementation in power
grid operations.

Future research will focus on deploying the camera modules
in real-world environments and collecting observational data
to validate the model’s forecasting capabilities under actual
atmospheric conditions. The ultimate goal is to enable reliable,
region-wide solar irradiance forecasting based on a distributed
network of low-cost sky imagers. The synthetic framework and
results presented in this study provide a robust foundation for
this transition and serve as a critical preparatory step toward
real-world implementation.
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This research underlines the importance of flexible, dataeffi-
cient approaches to renewable energy forecasting. The method pre-
sented not only demonstrates the feasibility of regional predictions 
of solar irradiance but also highlights the potential of multi-camera 
systems for accurate forecasting over larger areas. By enabling pre-
dictions on a regional scale, this work provides a solid foundation 
for future advances in solar energy forecasting and its practical im-
plementation in power grid operations. 

Future research will focus on deploying the camera modules in 
real-world environments and collecting observational data to vali-
date the model’s forecasting capabilities under actual atmospheric 
conditions. The ultimate goal is to enable reliable, region-wide 
solar irradiance forecasting based on a distributed network of low-
cost sky imagers. The synthetic framework and results presented in 
this study provide a robust foundation for this transition and serve 
as a critical preparatory step toward real-world implementation. 
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