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PV Integration in LV Networks and Capacity Analysis
Maja Muftić Dedović, Samir Avdaković, Adin Memić

Summary — The increasing integration of photovoltaic (PV) 
systems in low-voltage (LV) networks presents challenges in violation 
of permitted voltage changes in the LV network and conductor and 
transformer capacity, which are critical for maintaining grid reliabi-
lity and operational efficiency. This paper analyzes PV integration, 
focusing on voltage control, conductor capacity, and the importance 
of day-ahead PV generation and consumption for proactive grid ma-
nagement. Using MATLAB, the LV network is modeled to assess vol-
tage analysis and conductor capacity for PV capacities ranging from 
3 kW to 8 kW per consumer. Predictions of day-ahead PV production 
are conducted using a feedforward neural network trained on meteo-
rological data such as solar irradiance, temperature, and cloud cover. 
The predictive model enabled voltage drop simulations and capacity 
analysis under forecasted conditions. The results demonstrated that 
voltage levels remained within the permissible range (+5%, -10% of 
400 V) for PV capacities up to 8 kW, ensuring operational reliabi-
lity. The neural network-based predictions are closely aligned with 
modeled values, with minimal differences, validating the forecasting 
approach. Voltage variations increased with higher PV capacities, 
but conductor current levels consistently remained below thermal 
limits. Incremental PV capacity integration revealed the network’s 
ability to support distributed generation effectively but with limitati-
ons at higher capacities. This research highlights the role of accurate 
forecasting and optimization in ensuring reliable renewable energy 
adoption.

Keywords — Distributed Energy Resources (DERs), Low-Volta-
ge Networks, Neural Networks, Optimization, Prosumers, Voltage 
Analysis.

I. Introduction

The increasing penetration of distributed energy resources 
(DERs), particularly photovoltaic (PV) systems, poses si-
gnificant challenges and opportunities for modern power 

distribution networks. With the emergence of prosumers, entities 
capable of both consuming and producing electricity, and energy 
communities, the dynamics of energy generation, consumption, 
and grid interaction are rapidly evolving. Efficiently managing 
these interactions is critical to ensuring grid stability, optimizing 
energy utilization, and supporting the transition towards sustaina-
ble energy systems. 

Reference [1] address these challenges by proposing a distribu-
ted congestion management scheme based on iterative distribution 
locational marginal pricing (iDLMP). Their approach optimizes 
prosumer energy operations to alleviate congestion in distributi-
on networks. By considering prosumers as self-organizing units 
capable of integrating diverse resource flexibilities their scheme 
enhances local energy sharing and supports the efficient integration 
of DERs. Incorporating such innovative congestion management 
strategies is crucial for improving hosting capacities and ensuring 
stable operation of low-voltage (LV) networks with high DER 
penetration. Building upon these insights, this research aims to 
further optimize prosumer integration by addressing voltage regu-
lation challenges and conductor capacity evaluation.

One of the primary challenges associated with PV integration 
is managing the voltage variations caused by fluctuating energy 
generation. These fluctuations can lead to voltage drops or rise, po-
tentially exceeding permissible limits and impacting the quality of 
the power supply. Additionally, the capacity of existing conductors 
may be insufficient to handle the increased power flow, necessi-
tating careful evaluation to avoid thermal overloads and maintain 
operational safety.

This paper addresses these challenges by analyzing the effects 
of PV integration on voltage profiles and conductor capacity in LV 
networks. The research employs a systematic methodology to eva-
luate the feasibility of PV integration while ensuring network re-
liability and compliance with operational standards. The proposed 
approach includes modeling the network’s electrical and geometric 
characteristics, assessing PV production dynamics, and conduc-
ting iterative optimization to identify maximum permissible PV 
capacities.

The findings of this research aim to provide practical insights 
for grid operators, policymakers, and engineers in planning and op-
timizing PV system integration in LV networks, ensuring a balance 
between renewable energy adoption and system reliability.

A key novelty of this paper is the quantitative evaluation of 
PV hosting capacity under different penetration scenarios while 
ensuring compliance with operational voltage limits and conductor 
thermal ratings. The paper also introduces an iterative assessment 
methodology that systematically determines the maximum allowa-
ble PV capacity in an LV network, offering valuable insights for 
grid operators and planners.

The comparative analysis of modeled against forecasted PV 
production demonstrates the reliability of predictive approaches 
in assessing voltage within permissible limits, reinforcing the im-
portance of proactive grid management. The findings contribute 
to a more precise estimation of hosting capacity, ensuring efficient 
integration of renewable energy sources without compromising 
network reliability.
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The key contributions of this paper are as follows.

1. The paper provides a quantitative evaluation of PV hosting 
capacity in LV networks while ensuring compliance with op-
erational voltage limits and conductor thermal ratings.

2. An iterative assessment methodology is introduced to deter-
mine the maximum allowable PV penetration under different 
scenarios, offering practical insights for grid operators and 
planners.

3. The research validates the accuracy of predictive models by 
comparing modeled and forecasted PV generation, ensuring 
that voltage levels remain within permissible limits.

4. Realistic daily and seasonal load variations are considered, 
acknowledging their impact on PV integration and network 
performance.

5. The findings highlight the importance of predictive approach-
es in optimizing PV integration, facilitating better planning 
and operational decision-making for LV networks.

This paper is structured as follows. Section II provides a review 
of relevant literature, highlighting existing research on PV integra-
tion in LV networks and identifying key gaps addressed in this re-
search. Section III describes the proposed methodology, including 
network modeling, PV generation characteristics, and the iterative 
assessment approach used for hosting capacity evaluation. Section 
IV presents the implementation of day-ahead PV output predic-
tion using a neural network model, supporting capacity analysis 
under forecasted conditions. Section V discusses the results obtai-
ned from simulations, comparing modeled and forecasted PV pro-
duction and analyzing voltage and conductor constraints. Finally, 
Section VI concludes the paper by summarizing key findings and 
outlining potential directions for future research.

II. Literature Review
Recent advancements in integrating prosumers into power 

systems emphasize the critical role of digitalization and advanced 
optimization techniques. Paper [2] explore the strategic behavior 
of prosumers in electricity markets, demonstrating how DER in-
vestments are influenced by market dynamics and proposing regu-
latory measures to align private and public incentives . Also, [3] in-
troduces a decentralized Virtual Aggregation Environment (VAE), 
enabling smart prosumers to collaboratively manage flexibility 
without a central aggregator, highlighting the potential of coope-
rative-competitive algorithms for enhancing grid reliability . In [4] 
is employed multi-agent reinforcement learning (MARL) to opti-
mize peer-to-peer energy trading, showing how dynamic pricing 
mechanisms can improve community self-sufficiency and reduce 
costs while balancing local supply and demand.  

An Internet of Energy (IoE) framework facilitates bidirectional 
energy transactions and integrates DERs into virtual power plants, 
with optimization techniques playing a key role in enhancing grid 
reliability [5]. A stochastic bottom-up model analyzes the effects 
of PV self-consumption on load profiles, emphasizing the need 
for detailed prosumer-level modeling to improve forecasting and 
grid planning [6]. A prosumer-centric peer-to-peer energy trading 
approach addresses network voltage constraints, balancing social 
welfare with economic and technical objectives in energy markets 
[7].

In [8], a hybrid control policy is proposed to address locatio-
nal disparities in voltage regulation and economic arbitrage, en-
hancing grid stability and prosumer benefits. The research in [9] 
focuses on optimizing DER under uncertainty through improved 
risk management in decision-making models. The research in [10] 

examines the impact of distribution tariffs on prosumer demand 
response, highlighting trade-offs between energy costs and distri-
bution expenses. An incentive-based voltage regulation framework 
for unbalanced radial networks is developed in [11], balancing 
prosumer participation and grid needs while reducing operational 
costs. In [12], an innovative energy management system for LV 
networks is presented, utilizing prosumer-based ancillary services 
to manage voltage and reduce congestion.

Challenges such as reverse power flows and voltage fluctu-
ations in LV grids, caused by high penetration of DERs, require 
advanced grid management tools to improve hosting capacities 
and maintain stability [13]. A probabilistic approach for maximi-
zing PV hosting capacity through the coordinated management of 
OLTCs, PV inverters, and EVs demonstrates significant potential 
for enhancing grid performance and stability [14]. 

In [15], Prosumer Energy Management Systems (PEMS) are 
developed to highlight prosumers’ dual role as consumers and 
producers, focusing on advanced communication and optimizati-
on techniques for energy sharing and smart grid operations. The 
research in [16] presents a transactive energy framework using 
coordinated power control and game theory to optimize prosumer 
participation, addressing economic incentives and voltage stability. 
In [17], the financial viability of photovoltaic-battery systems (PV-
BSS) is examined, exploring the role of demand response and ca-
pacity markets, while identifying challenges related to uncertainty 
and limited policy support. Reference [18] analyzes the hosting ca-
pacity of residential grids with high PV penetration and distributed 
storage, demonstrating how advanced management systems and 
coordinated storage utilization mitigate voltage instability and en-
hance capacity. Finally, [19] reassesses voltage variation strategies, 
emphasizing that while effective in certain conditions, traditional 
methods face limitations in achieving substantial energy savings in 
advanced systems. 

Paper [20] explores the role of energy prosumers in sustaina-
ble energy transitions, highlighting the socio-economic and policy 
dimensions of prosumer-driven systems. They underline the need 
for decentralized configurations and innovative business models 
to maximize prosumer contributions to net-zero targets. Research 
in [21] explores energy storage systems (ESS) for active power 
management and voltage regulation, proposing strategies to ma-
intain grid stability while enhancing prosumer benefits. Also, [22] 
addresses challenges such as overvoltage and reverse power flow 
in residential grids with high PV penetration, suggesting scalable 
battery systems and solar radiation forecasting to ensure voltage 
stability and energy quality.

Recent research highlights the need to shift from deterministic 
to stochastic methods for hosting capacity (HC) estimation. De-
terministic approaches, though simpler, often overlook the com-
plexities of variable renewable generation and load uncertainties. 
Stochastic models, such as those in [23], incorporate these uncerta-
inties using advanced optimization techniques, improving accuracy 
and efficiency over traditional methods. Similarly, [24] demonstra-
tes the limitations of deterministic frameworks and validates the 
advantages of stochastic approaches in managing PV penetration. 
Further advancements in HC, as discussed in [25], focus on ESS 
and dynamic hosting capacity (DHC) strategies, which address 
voltage rise and reverse power flow issues while enhancing grid 
reliability through adaptive control and storage integration. 

Previous researches on PV hosting capacity have primarily 
focused on deterministic methods that evaluate network constra-
ints under fixed operating conditions. Unlike these researches, 
this paper presents a comprehensive approach that integrates both 
voltage regulation and conductor thermal constraints while syste-
matically determining the maximum feasible PV penetration using 
an iterative evaluation method. In addition, a comparative analysis 
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between modeled and forecasted PV generation ensures that the 
methodology aligns with real-world operational conditions.

III. METODOLOGY
This paper explores the effects of integrating PV systems into 

LV distribution networks, emphasizing voltage analysis and con-
ductor capacity evaluation. The proposed methodology provides a 
systematic approach for assessing the feasibility of PV integration 
while maintaining network reliability. In Figure 1, the algorithm is 
presented as a flowchart illustrating the applied approach.

 

Fig. 1. Flowchart of the applied approach.

A. Network Definition
The geometry of the LV network is characterized by defining 

the number of consumers or prosumers, the length of distribution 
lines, and the type of cables used. The length of the cables and their 
material properties directly influence the resistance and impedan-
ce, which are crucial for calculating voltage variations and power 
losses.

The LV distribution network in this research is modeled with 
a focus on its electrical and geometric characteristics, including 
conductor specifications, supply network parameters, transformer 
details, and load distribution. 

The LV network utilizes XP00-A type conductors with a cross-
sectional area of 4×70 mm2. The electrical characteristics of the-
se conductors include a phase resistance of 0.443 Ω/km, a phase 
reactance of 0.075 Ω/km, a zero-sequence resistance of 1.772 Ω/

km, and a zero-sequence reactance of 0.225 Ω/km. The continuous 
current-carrying capacity of the conductors is 192A. These para-
meters directly influence the impedance of the network and, con-
sequently, the voltage profile and power losses.

The LV network is fed by a medium-voltage (MV) network 
operating at a nominal voltage of 10 kV, with a short-circuit power 
of 250 MVA and an impedance ratio (R/X) of 0.1. The transformer 
linking the MV and LV networks is rated at 160 kVA and operates 
with a primary voltage of 10 kV and a secondary voltage of 0.4 kV. 
Its short-circuit voltage is 4%, and its copper and iron losses are 
2.35 kW and 0.46 kW, respectively. The no-load current is 2.3 A, 
with impedance ratios (Ro/Rt) of 2.0 and (Xo/Xt) of 1.0. 

The LV network’s nominal voltage is 0.4 kV, with a permi-
ssible voltage limit of +5%  (-10%) under normal operation con-
ditions. The network primarily serves residential consumers. The 
diversity factor for a large number of households is set at 0.17, and 
the typical power factor is 0.95. These parameters represent a rea-
listic load profile for residential areas. A total of 10 consumers are 
observed on one segment of the low-voltage distribution (cable).

The network’s design includes evenly distributed nodes along 
the outgoing feeder, with specific distances between them. The dis-
tances between successive nodes vary, including segments of 0.05 
km, 0.025 km, and 0.075 km. These variations reflect the actual 
spatial distribution of connections in residential neighborhoods and 
are crucial for calculation of voltage changes and current flows. 
The cumulative impedance of the network is determined by sum-
ming the impedance contributions of these individual segments. 
This arrangement ensures an accurate representation of real-world 
network conditions, enabling precise modeling and analysis of vol-
tage profiles and conductor utilization.

B. Defining PV Characteristics
The production of PV is modeled as a time-dependent func-

tion, P=f(t), which accounts for the variation in solar irradiance 
throughout the day. This function includes factors such as the 
geographical location, orientation of the panels, and meteorolo-
gical conditions, all of which impact the energy output of the PV 
system. A time-series simulation is employed to capture daily and 
seasonal fluctuations in PV generation, ensuring accurate mode-
ling of the system’s behavior. 

In addition to PV generation variability, household electri-
city consumption exhibits daily and seasonal fluctuations, which 
can influence voltage profiles and network constraints. Higher 
electricity demand during peak evening hours or winter months 
may lead to increased voltage drops and higher conductor loa-
ding, potentially affecting the network’s ability to accommo-
date additional PV capacity. Conversely, lower demand during 
midday hours, when PV generation is at its peak, may contribute 
to higher voltage rise, especially in low-load scenarios.

To ensure a realistic assessment of PV hosting capacity, the 
methodology considers representative daily load profiles. Howe-
ver, incorporating stochastic load modeling in future research 
could provide a more detailed evaluation of how dynamic con-
sumption patterns interact with PV generation, allowing for more 
accurate grid planning and adaptive voltage regulation strategies.

The analysis of electricity production from PV systems is 
conducted for installed capacities ranging from 3 kW to 8 kW 
in increments of 1 kW. The simulation is performed using a 
mathematical model that tracks changes in solar radiation inten-
sity throughout the day, taking into account local climatic and 
geographical conditions characteristic of regions with a tempe-
rate climate. Ideal conditions for a clear day are simulated, with 
solar radiation intensity peaking at midday. It is assumed that the 
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panels are installed on a roof with an optimal orientation. These 
parameters enabled the creation of a daily production profile that 
follows a typical solar radiation curve.

For a PV system with a capacity of 6 kW, the electricity pro-
duction over 24 hours, expressed in kilowatts (kW), is shown in 
Figure 2.b). The production and consumption refer to June 21st, 
the longest day of the year, also known as the summer solstice. 

For higher-capacity systems, such as an 8 kW system, the 
production curve retains a similar daily pattern, but peak valu-
es are proportionally higher. The simulation is carried out under 
standard test conditions with a maximum irradiance of 1000 W/
m² and a panel temperature of 25°C. The production values are 
validated by comparison with reference data from the literature 
and standardized simulations for PV systems in similar climatic 
regions [26,27].

Figure 2. presents the hourly variation of electricity consump-
tion, PV production, and net power demand over a 24-hour for a 
6 kW PV system per consumer.

Fig. 2. a.) Electricity consumption, b.) PV Production, and c.) Net power 
demand over 24 hours for 6 kW.

C. Calculation of Power Demand
For the analysis, household electricity consumption data is cal-

culated over a 24-hour period. The estimated load curve for the 
year 2024, sourced from the official documents of Public Enterpri-
se Electric Utility of Bosnia and Herzegovina [28], is used as the 
basis. This curve is multiplied by the average monthly electricity 
consumption per household in Bosnia and Herzegovina, which 
is approximately 325 kWh (for June) [29]. The average monthly 
consumption is calculated by dividing the annual consumption 
by 12, providing a representative value for analysis. The data is 
calculated hourly, with each entry representing the average power 
consumption in kW during one hour. The collected data reflects 
the dynamics of daily consumption, including variations caused 
by daily activities, the use of household appliances, and external 
factors such as temperature and user habits. The collected data is 
visualized through time series (Figure 2.b)), illustrating changes in 
consumption throughout the day and enabling the identification of 
peak loads and periods of reduced consumption.

The net power demand of households (PD) is determined 
by subtracting the power supplied by PV panels (PPV) from the 
household’s total power requirements (Ptotal). This relationship is 
expressed as:

 PD = Ptotal  - PPV. (1)

where:

PD: The net power demand from the distribution network,

Ptotal: The household’s internal power demand,

PPV: The power generated by the PV system.

Negative values in the calculated power demand (Figure 2.c)) 
and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system’s operational stability and efficiency under varying load 
conditions.

Fig. 3. Net power demand over a 24-hour for PV production from 3 kW 
to 8 kW.

D. Reference Values
For all nodes in the network, the following reference values 

are used:

• Nominal Voltage: Uref=400 V, representing the base operating 
voltage of the LV network,

• Power Factor: cosφ = 0.95, reflecting typical power factor val-
ues in residential networks.

These values are essential for ensuring that calculations align 
with the standard operational parameters of the network.

E. Voltage Analysis
An algorithm is implemented to calculate the voltage across 

all network segments. The algorithm iteratively evaluates whether 
the voltage at each node remains within +5% (-10%) of the refe-
rence voltage (Uref). Voltage drops exceeding this range indicate 
that corrective measures, such as upgrading cables or redistributing 
loads, are necessary.

The voltage drop (ΔU) along a segment is calculated using the 
following formula:

ΔU = I⋅Z. (2)

where:

I: The current through the segment,

Z: The impedance of the cable.

Impedance is determined based on the cable’s length, cross-
sectional area, and material properties.

The mathematical model is presented through the following 
expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships.

The reactive power at node i is calculated based on the active 
power and power factor using the following equation: 
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expressed as: 
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PD: The net power demand from the distribution network, 
Ptotal: The household’s internal power demand, 
PPV: The power generated by the PV system. 
Negative values in the calculated power demand (Figure 2.c)) 

and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system's operational stability and efficiency under varying load 
conditions. 

 
Fig. 3. Net power demand over a 24-hour for PV production 
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D. Reference Values 
For all nodes in the network, the following reference values are 

used: 
• Nominal Voltage: Uref=400 V, representing the base 

operating voltage of the LV network, 
• Power Factor: cosφ = 0.95, reflecting typical power 

factor values in residential networks. 
These values are essential for ensuring that calculations align 

with the standard operational parameters of the network. 

E. Voltage Analysis 
An algorithm is implemented to calculate the voltage across all 

network segments. The algorithm iteratively evaluates whether the 
voltage at each node remains within +5% (-10%) of the reference 
voltage (Uref). Voltage drops exceeding this range indicate that 
corrective measures, such as upgrading cables or redistributing 
loads, are necessary. 

The voltage drop (ΔU) along a segment is calculated using the 
following formula: 

ΔU = I⋅Z. (2) 
where: 
I: The current through the segment, 
Z: The impedance of the cable. 
Impedance is determined based on the cable's length, cross-

sectional area, and material properties. 
The mathematical model is presented through the following 

expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships. 

The reactive power at node i is calculated based on the active 
power and power factor using the following equation:  

 
Q(i) = P(i) ⋅ tan(φ)    (3) 

 
where: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑: Power factor at the given node. 
P(i): The active power at the given node. 
Q(i): The reactive power at the given node. 
 
To determine the voltage drop, the total active and reactive 

power at node i must be define as the sum of all preceding nodes 
in the network: 

 
Ptotal(i) =  ∑ P(j)n

j=1        (4) 
Qtotal(i) =  ∑ Q(j)n
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The overall phase angle of the system is determined using the 
ratio of total reactive power to total active power: 
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Ptotal(i)
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where: 
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𝑃𝑃𝑃𝑃(𝑗𝑗𝑗𝑗): Reactive power at node j. 
n: Total number of nodes in the network. 
 
The calculation of cable impedance includes the series 

resistance R and reactance X, considering the total phase angle. 
Effective impedance of the cable directly influences the voltage 
drop in the network:   
  

Zaux = R + X ⋅ tanφtotal(i)        (7) 
 
The voltage drop along the cable is determined using the 

following equation:  
 

∆U =  1000⋅Ptotal(i)⋅L(i)⋅Zaux
U(i−1)2

                 (8) 
 

where: 
𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖𝑖𝑖): Total active power at node i. 
𝐿𝐿𝐿𝐿(𝑖𝑖𝑖𝑖): Length of the cable between nodes i-1 and i. 
𝑈𝑈𝑈𝑈(𝑖𝑖𝑖𝑖 𝑖 1): The voltage at the previous node. 
 
The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
node, total power calculations, and the resulting voltage drop at 
each segment. 
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    (3)

where:

cos : Power factor at the given node.

P(i): The active power at the given node.

Q(i): The reactive power at the given node.

To determine the voltage drop, the total active and reactive 
power at node i must be define as the sum of all preceding nodes 
in the network:

       (4)

            (5)

The overall phase angle of the system is determined using the 
ratio of total reactive power to total active power:

      (6)

where:

P total: Total active power at node i.

Q total: Total reactive power at node i.

  total :Total phase angle at node i.

P(j): Active power at node j.

P(j):Reactive power at node j.

n: Total number of nodes in the network.

The calculation of cable impedance includes the series resi-
stance R and reactance X, considering the total phase angle. Effec-
tive impedance of the cable directly influences the voltage drop in 
the network:  

 

        (7)

The voltage drop along the cable is determined using the 
following equation: 

                 (8)

where:

P total: Total active power at node i.

L(i): Length of the cable between nodes i-1 and i.

U(i-1): The voltage at the previous node.

The implemented algorithm is illustrated in the following 
figure, which provides an overview of the steps for calculating 
voltage drops using MATLAB software [30]. The algorithm ite-
rates over 24 hours, taking into account active and reactive power 
at each node, total power calculations, and the resulting voltage 
drop at each segment.
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Impedance is determined based on the cable's length, cross-

sectional area, and material properties. 
The mathematical model is presented through the following 

expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships. 

The reactive power at node i is calculated based on the active 
power and power factor using the following equation:  

 
Q(i) = P(i) ⋅ tan(φ)    (3) 

 
where: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝜑𝜑: Power factor at the given node. 
P(i): The active power at the given node. 
Q(i): The reactive power at the given node. 
 
To determine the voltage drop, the total active and reactive 

power at node i must be define as the sum of all preceding nodes 
in the network: 
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resistance R and reactance X, considering the total phase angle. 
Effective impedance of the cable directly influences the voltage 
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The voltage drop along the cable is determined using the 

following equation:  
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where: 
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The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
node, total power calculations, and the resulting voltage drop at 
each segment. 
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PD: The net power demand from the distribution network, 
Ptotal: The household’s internal power demand, 
PPV: The power generated by the PV system. 
Negative values in the calculated power demand (Figure 2.c)) 

and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system's operational stability and efficiency under varying load 
conditions. 

 
Fig. 3. Net power demand over a 24-hour for PV production 
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E. Voltage Analysis 
An algorithm is implemented to calculate the voltage across all 

network segments. The algorithm iteratively evaluates whether the 
voltage at each node remains within +5% (-10%) of the reference 
voltage (Uref). Voltage drops exceeding this range indicate that 
corrective measures, such as upgrading cables or redistributing 
loads, are necessary. 

The voltage drop (ΔU) along a segment is calculated using the 
following formula: 

ΔU = I⋅Z. (2) 
where: 
I: The current through the segment, 
Z: The impedance of the cable. 
Impedance is determined based on the cable's length, cross-

sectional area, and material properties. 
The mathematical model is presented through the following 

expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships. 

The reactive power at node i is calculated based on the active 
power and power factor using the following equation:  
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where: 
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power at node i must be define as the sum of all preceding nodes 
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resistance R and reactance X, considering the total phase angle. 
Effective impedance of the cable directly influences the voltage 
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Zaux = R + X ⋅ tanφtotal(i)        (7) 
 
The voltage drop along the cable is determined using the 
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∆U =  1000⋅Ptotal(i)⋅L(i)⋅Zaux
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The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
node, total power calculations, and the resulting voltage drop at 
each segment. 
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PD: The net power demand from the distribution network, 
Ptotal: The household’s internal power demand, 
PPV: The power generated by the PV system. 
Negative values in the calculated power demand (Figure 2.c)) 

and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system's operational stability and efficiency under varying load 
conditions. 

 
Fig. 3. Net power demand over a 24-hour for PV production 

from 3 kW to 8 kW. 
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• Nominal Voltage: Uref=400 V, representing the base 

operating voltage of the LV network, 
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These values are essential for ensuring that calculations align 

with the standard operational parameters of the network. 
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An algorithm is implemented to calculate the voltage across all 

network segments. The algorithm iteratively evaluates whether the 
voltage at each node remains within +5% (-10%) of the reference 
voltage (Uref). Voltage drops exceeding this range indicate that 
corrective measures, such as upgrading cables or redistributing 
loads, are necessary. 

The voltage drop (ΔU) along a segment is calculated using the 
following formula: 

ΔU = I⋅Z. (2) 
where: 
I: The current through the segment, 
Z: The impedance of the cable. 
Impedance is determined based on the cable's length, cross-

sectional area, and material properties. 
The mathematical model is presented through the following 

expressions, which define the power flow calculations in the 
network based on fundamental electrical relationships. 

The reactive power at node i is calculated based on the active 
power and power factor using the following equation:  
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The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
node, total power calculations, and the resulting voltage drop at 
each segment. 
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PD: The net power demand from the distribution network, 
Ptotal: The household’s internal power demand, 
PPV: The power generated by the PV system. 
Negative values in the calculated power demand (Figure 2.c)) 

and Figure 3.) indicate instances where the PV system produced 
more energy than the household consumption, potentially leading 
to energy export or storage opportunities. This net power demand 
is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system's operational stability and efficiency under varying load 
conditions. 

 
Fig. 3. Net power demand over a 24-hour for PV production 

from 3 kW to 8 kW. 
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The voltage drop along the cable is determined using the 
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The implemented algorithm is illustrated in the following figure, 

which provides an overview of the steps for calculating voltage 
drops using MATLAB software [30]. The algorithm iterates over 
24 hours, taking into account active and reactive power at each 
node, total power calculations, and the resulting voltage drop at 
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is subsequently used to calculate hourly voltage variations across 
each segment of the distribution network, providing insights into 
the system's operational stability and efficiency under varying load 
conditions. 
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F. Conductor Capacity Verification 

The current flowing through each network segment is evaluated 
to ensure it does not exceed the continuous current-carrying 
capacity (Ith) of the cable. For this study, the threshold is set to 
Ith=192 A. 

The verification process involves: 

1) Determining Cable Specifications: Cable specifications, 
including the permissible current-carrying capacity under 
steady-state conditions, are obtained from manufacturer 
data or relevant standards. Factors such as ambient 
temperature, installation method, and cable insulation are 
considered. 

2) Calculating Current Flow: The current through each 
segment is calculated as:  

I = P/(√3 ⋅ V ⋅  cosφ). (9) 
where:  
P: Power flow through the segment, 
U: Voltage level, 
cosφ: Power factor. 

3) Comparison with Capacity: The calculated current is 
compared to Ith. If I>Ith, the cable is insufficient, and 
recommendations for upgrading are provided. 

This verification ensures the thermal safety of the conductors 
and prevents overloading, which could lead to insulation failure or 
fire hazards. 

G. Iterative Optimization Process 
An iterative process is applied to optimize the integration of PV. 

If both voltage and current limits are within acceptable ranges, the 
installed PV capacity is incrementally increased by 1 kW from 3 to 
8 kW. This process continues until one or more constraints are 
violated, marking the maximum permissible PV capacity for the 
network. If constraints are exceeded at the initial stage, the analysis 
concludes with recommendations for network reinforcement or 
alternative strategies. 

The iterative optimization process determines the maximum PV 
capacity that the network can accommodate while ensuring voltage 
and current constraints are not violated. The process follows an 
incremental approach where the PV capacity is increased in steps 
of ΔP=1 kW, starting from the initial production PPV,initial. The 
updated PV production at each iteration is given by: 

 
PPV,new =  PPV,prev + ∆𝑃𝑃𝑃𝑃             (10) 

 
At each step, the voltage and current limits are checked: 
 

Umax(i) < U𝑡𝑡𝑡𝑡𝑡,   Imax(i) < Ith                 (11) 
 
where Uth and Ith represent the permissible voltage and current 

limits, respectively. If these conditions are met, the iteration 
continues with an increased PV production. If one or both 
constraints are exceeded, the process terminates, identifying the 
maximum allowable PV production for the given network 
configuration. 

IV. DAY-AHEAD PV OUTPUT PREDICTION AND CAPACITY 
ANALYSIS USING NEURAL NETWORKS 

In this section of the paper, a scientific approach is taken to 
predict day-ahead PV power output and voltage variations on LV 
networks, as well as to conduct capacity analysis based on PV 
production data available for the forecasted day. The integration of 
PV systems into power networks plays a critical role in 
transitioning towards sustainable energy systems [31]. Accurate 
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1. Determining Cable Specifications: Cable specifications, 
including the permissible current-carrying capacity under 
steady-state conditions, are obtained from manufacturer data 
or relevant standards. Factors such as ambient temperature, 
installation method, and cable insulation are considered.

2. Calculating Current Flow: The current through each segment 
is calculated as:  

 

where:  
P: Power flow through the segment, 
U: Voltage level, 
cosφ: Power factor.

3. Comparison with Capacity: The calculated current is com-
pared to Ith. If I>Ith, the cable is insufficient, and recommen-
dations for upgrading are provided.

This verification ensures the thermal safety of the conductors 
and prevents overloading, which could lead to insulation failure or 
fire hazards.

G. Iterative Optimization Process
An iterative process is applied to optimize the integration of 

PV. If both voltage and current limits are within acceptable ranges, 
the installed PV capacity is incrementally increased by 1 kW from 
3 to 8 kW. This process continues until one or more constraints are 
violated, marking the maximum permissible PV capacity for the 
network. If constraints are exceeded at the initial stage, the analysis 
concludes with recommendations for network reinforcement or al-
ternative strategies.

The iterative optimization process determines the maximum 
PV capacity that the network can accommodate while ensuring 
voltage and current constraints are not violated. The process 
follows an incremental approach where the PV capacity is increa-
sed in steps of ΔP=1 kW, starting from the initial production PPV,initial 
. The updated PV production at each iteration is given by:

             (10)

At each step, the voltage and current limits are checked:

                (11)

 where Uth  and Ith  represent the permissible voltage and current 
limits, respectively. If these conditions are met, the iteration con-
tinues with an increased PV production. If one or both constraints 
are exceeded, the process terminates, identifying the maximum 
allowable PV production for the given network configuration.

IV. Day-Ahead PV Output Prediction and 
Capacity Analysis Using Neural Networks

In this section of the paper, a scientific approach is taken to 
predict day-ahead PV power output and voltage variations on LV 
networks, as well as to conduct capacity analysis based on PV 
production data available for the forecasted day. The integrati-
on of PV systems into power networks plays a critical role in 
transitioning towards sustainable energy systems [31]. Accurate 

predictions of PV output are essential for optimizing the opera-
tion and planning of energy systems, ensuring grid stability, and 
maximizing the utilization of renewable energy sources, as de-
monstrated in [32]

The predictive model for PV output utilizes a feedforward 
neural network (FNN), which is selected for its computational 
efficiency and ability to capture non-linear relationships between 
input variables. The model is trained using historical data of PV 
production and meteorological variables, including solar irradi-
ance, temperature, and cloud cover. These variables are chosen 
because of their significant impact on PV system performance. 
The prediction system is developed for six PV systems with no-
minal capacities ranging from 3 kW to 8 kW.

The neural network architecture includes a single hidden 
layer with 10 neurons to balance complexity and computational 
cost. A non-linear activation function, such as sigmoid, is appli-
ed in the hidden layer to model complex interactions between 
inputs, while the output layer employs a linear activation func-
tion to produce continuous predictions of PV power output. The 
Levenberg-Marquardt backpropagation algorithm, a robust op-
timization method, is used for training. The training process is 
conducted in MATLAB [30] using the built-in train function.

The input dataset for the neural network consisted of 24 
hourly values of PV production for each system, representing 
typical operational data for one day. Additionally, three key me-
teorological variables are included: solar irradiance, temperature, 
and cloud cover. Solar irradiance, measured in watts per square 
meter (W/m²), represents the amount of solar energy available to 
the PV, with values ranging from 0 (night) to 1000 W/m² (peak 
sunlight). Ambient temperature, measured in degrees Celsius 
(°C), affects panel efficiency and ranged from 5°C in the early 
morning to 32°C in the afternoon. Cloud cover, expressed as a 
percentage, is used to estimate the impact of cloudiness on solar 
availability, with values ranging from 0% (clear skies) to 100% 
(fully overcast).

To ensure efficient training and prevent biases caused by scale 
differences among the input variables, all meteorological inputs 
are normalized to a range of [0, 1]. 

The input data matrix X is constructed by combining the hour 
of the day (1 to 24), normalized solar irradiance, normalized tem-
perature, and normalized cloud cover. The target output matrix 
Y consisted of historical PV production values for each system.

The neural network is trained using this dataset, with the loss 
function defined as the mean squared error (MSE) between pre-
dicted and actual outputs. The training process iterated for up to 
100 epochs or until the model achieved convergence, defined as 
the minimization of MSE to a predefined threshold.

After training, the model generated day-ahead predictions for 
each PV system using the same meteorological conditions. The-
se predictions are then utilized for additional analyses, including 
voltage drop simulations on low-voltage networks and capacity 
assessments of the PV systems under forecasted conditions.

 V. Results and Discussion
The proposed methodology is tested on an LV distribution 

network model. The results demonstrated that:

1. Voltage remained within +5% (-10%) of the nominal voltage 
for most scenarios.

2. Current levels are below the continuous current-carrying ca-
pacity of the cables, ensuring thermal safety.
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3. Incremental increases in PV capacity allowed for a gradual 
understanding of the network’s limitations.

The results obtained by applying the approach explained in 
Section III are presented for two cases. The first case utilizes mo-
deled PV production data. 

The second case considers forecasted PV production one day 
ahead, as described in Section IV. Figure 4. illustrates the results 
for the first case, while Table 1. presents the outcomes for the se-
cond case, highlighting the relationship between PV production 
and voltage levels (U) across various scenarios.

Fig. 4. Relationship between PV production and voltage levels (U) across 
various scenarios.

Table I

Comparison of Voltage (%) for Modeled and Forecasted 
PV Production at Different Power Levels

PV Production 
(kW)

Modelled Voltage 
(%)

Forecasted 
Voltage (%)

Difference (%)

3 2.11 2.03 0.08
4 2.87 2.92 0.05
5 3.62 3.74 0.12
6 4.37 3.97 0.4
7 5.11 5.25 0.14
8 5.85 5.79 0.06

From the approach provided in section III, it is evident that the 
voltage levels across the network are significantly influenced by the 
size of the PV systems, ranging from 3 kW to 8 kW. The voltage 
levels tend to increase slightly with higher installed PV capacities 
due to the reverse power flow in scenarios where local generation 
exceeds demand. For instance, at a PV size of 3 kW, the observed 
voltage levels are predominantly between 400 V and 405 V, while 
for larger systems like 8 kW, voltage levels range between 415 V 
and 420 V. This increase demonstrates that higher PV capacities 
inject more power into the network, improving voltage profiles but 
also necessitating careful voltage regulation to avoid overvoltage 
issues. Crucially, the voltage values for all PV capacities remain 
within the permissible range of +5% of -10 % of the nominal vol-
tage (400 V), confirming that the LV network is capable of integra-
ting these capacities without breaching operational voltage limits.

The voltage along the network is calculated for a cable len-
gth of 500 meters. This length contributes to increased impedance, 
amplifying voltage variations under higher loads, especially du-
ring peak consumption periods. Despite this, the results indicate 
that the network generally maintains adequate voltage under most 
conditions. For instance, at a 3 kW PV production level, voltage 
variations remain minimal, with average below 2 V, demonstrating 
a well-balanced network response. However, at higher capaciti-
es, such as 8 kW, maintaining acceptable voltage levels becomes 

more challenging. While the average voltage drop across nodes is 
approximately 8.5 V, there are instances where the maximum vol-
tage drop exceeds the critical threshold of 20 V. This highlights 
a potential risk of exceeding acceptable voltage levels at higher 
levels of distributed generation, particularly under certain load and 
generation configurations.

The variation in voltage across the network depends on the in-
stalled PV production, with higher capacities leading to increased 
voltage fluctuations. Table II presents the voltage observed in the 
network for different PV production levels.

Table II

Voltage in the Network for Different PV production

PV Production (kW) Voltage (V)

3 408.44
4 411.48
5 414.49
6 417.48
7 420.46
8 423.42

To address these challenges and ensure reliable network opera-
tion, especially in scenarios with higher PV penetration, optimiza-
tion measures are essential. The integration of ESS, such as batte-
ries, could help mitigate voltage fluctuations by absorbing excess 
generation during peak production and releasing energy during 
periods of high demand. Additionally, network interconnectivity 
and reinforcement, including meshing LV networks or upgrading 
conductor capacities, could reduce impedance and stabilize volta-
ge profiles.

Furthermore, the implementation of advanced digital solutions, 
such as real-time monitoring and control systems, would enable 
timely detection of voltage deviations and facilitate rapid correcti-
ve actions. Digitalizing the management of distributed generation 
through smart inverters and automated demand response could 
dynamically adjust generation and consumption patterns to main-
tain voltage within acceptable limits.

These strategies emphasize the importance of a proactive 
approach to grid management, particularly as PV penetration con-
tinues to increase. A combination of optimization, ESS, network 
upgrades, and digitalization will ensure that acceptable voltage le-
vels are maintained, even under demanding conditions. Such me-
asures are critical for transitioning toward a resilient, sustainable, 
and future-ready power distribution system.

As PV sizes increase, voltage at the nodes gradually rises, par-
ticularly during periods of high solar irradiance, as power is injec-
ted into the network. This phenomenon is most evident for systems 
between 6 kW and 8 kW, where voltage levels at distant nodes are 
observed to peak around 420 V, compared to closer nodes which 
maintain voltages near 410 V. Hourly data trends further valida-
te these findings, showing a stable voltage profile across multiple 
days. During peak production hours, typically midday, the voltage 
increases across the network are more uniform, whereas during 
early morning or evening hours, when PV generation is lower, the 
network operates closer to its base voltage of 400 V.

The results also indicate that the observed current values re-
main consistently below the maximum permissible limit of 192 
A for XP00-A conductors. At peak conditions with an 8 kW PV 
system, the maximum current observed is approximately 120 A, 
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predictions of PV output are essential for optimizing the operation 
and planning of energy systems, ensuring grid stability, and 
maximizing the utilization of renewable energy sources, as 
demonstrated in [32] 

The predictive model for PV output utilizes a feedforward 
neural network (FNN), which is selected for its computational 
efficiency and ability to capture non-linear relationships between 
input variables. The model is trained using historical data of PV 
production and meteorological variables, including solar 
irradiance, temperature, and cloud cover. These variables are 
chosen because of their significant impact on PV system 
performance. The prediction system is developed for six PV 
systems with nominal capacities ranging from 3 kW to 8 kW. 

The neural network architecture includes a single hidden layer 
with 10 neurons to balance complexity and computational cost. A 
non-linear activation function, such as sigmoid, is applied in the 
hidden layer to model complex interactions between inputs, while 
the output layer employs a linear activation function to produce 
continuous predictions of PV power output. The Levenberg-
Marquardt backpropagation algorithm, a robust optimization 
method, is used for training. The training process is conducted in 
MATLAB [30] using the built-in train function. 

The input dataset for the neural network consisted of 24 hourly 
values of PV production for each system, representing typical 
operational data for one day. Additionally, three key 
meteorological variables are included: solar irradiance, 
temperature, and cloud cover. Solar irradiance, measured in watts 
per square meter (W/m²), represents the amount of solar energy 
available to the PV, with values ranging from 0 (night) to 1000 
W/m² (peak sunlight). Ambient temperature, measured in degrees 
Celsius (°C), affects panel efficiency and ranged from 5°C in the 
early morning to 32°C in the afternoon. Cloud cover, expressed as 
a percentage, is used to estimate the impact of cloudiness on solar 
availability, with values ranging from 0% (clear skies) to 100% 
(fully overcast). 

To ensure efficient training and prevent biases caused by scale 
differences among the input variables, all meteorological inputs are 
normalized to a range of [0, 1].  

The input data matrix X is constructed by combining the hour of 
the day (1 to 24), normalized solar irradiance, normalized 
temperature, and normalized cloud cover. The target output matrix 
Y consisted of historical PV production values for each system. 
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function defined as the mean squared error (MSE) between 
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the minimization of MSE to a predefined threshold. 

After training, the model generated day-ahead predictions for 
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voltage drop simulations on low-voltage networks and capacity 
assessments of the PV systems under forecasted conditions. 
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providing sufficient headroom for safe operation. Similarly, for 
lower capacities such as 3 kW, current levels are typically below 
50 A, highlighting the efficiency of the network under partial loa-
ding conditions. Table III presents the maximum observed current 
for different PV production, ensuring that all values remain below 
the permissible thermal limit of 192 A.

Table III

Maximum Current in Conductors for Different PV 
production

PV Production (kW) Max. Current (A)

3 41.83
4 57.43
5 72.34
6 87.47
7 102.39
8 117.44

Lastly, the analysis of integration capacity demonstrates that 
incremental increases in PV capacities, from 3 kW to 8 kW, allow 
the network to integrate distributed generation effectively while 
maintaining reliability. However, further increases in PV capacity 
beyond 8 kW may necessitate network reinforcements, such as 
upgrading conductor cross-sectional areas or transformer capaciti-
es, to ensure continued compliance with voltage and current limits. 

These results from Table 1. demonstrate that the forecasted vol-
tage closely align with the modeled values, with variations remai-
ning within acceptable ranges. However, at higher PV production 
levels, the voltage drops approach critical thresholds (20 V and 
above), indicating a potential risk of exceeding acceptable voltage 
limits.

For a PV production of 3 kW, the modeled voltage drop corres-
ponds to 8.44 V, while the forecasted drop is 8.12 V, with a negli-
gible difference of 0.32 V. At 4 kW, the modeled drop increases to 
11.48 V, and the forecasted value closely aligns at 11.68 V, resul-
ting in a minor difference of 0.20 V. Similarly, at 5 kW, the mode-
led drop is 14.48 V, compared to the forecasted value of 14.96 V, 
with a difference of 0.48 V.

As the power level increases to 6 kW, the modeled voltage drop 
is 17.48 V, while the forecasted value is slightly lower at 15.88 V, 
resulting in a larger difference of 1.60 V. For 7 kW, the modeled 
and forecasted drops are 20.44 V and 21.00 V, respectively, with 
a difference of 0.56 V. Finally, at 8 kW, the modeled voltage drop 
is 23.40 V, and the forecasted value is nearly identical at 23.16 V, 
showing an excellent match with a minor difference of 0.24 V.

This underscores the importance of implementing measures 
such as energy storage, enhanced grid interconnectivity, and real-
time monitoring to mitigate the impact of high PV penetration on 
maintaining acceptable voltage levels in the network.

The transformer under consideration has a nominal capacity of 
160 kVA, equivalent to approximately 152 kW at a power factor of 
0.95, typically feeding a LV network with four outgoing feeders. 
This analysis focuses on one feeder with 10 connections, where 
individual loads range from 3 kW to 8 kW, corresponding to feeder 
loads between 30 kW and 80 kW. This load represents approxima-
tely 19.7% to 52.6% of the transformer’s total capacity, which is 
within operational limits, provided the total load across all feeders 
does not exceed 152 kW. Assuming equal distribution, the nominal 
load per feeder would be 38 kW, however, one feeder with a load 
of up to 80 kW would require reduced loads on the remaining fee-

ders to prevent overloading. Voltage regulation, with a short-circuit 
voltage of 4%, remains adequate, but high feeder loads, especially 
with long cable lengths, could result in critical voltage variations. 
At a power factor of 0.95, the current for an 80 kW load reaches 
approximately 121 A, requiring careful impedance considerations 
to maintain voltage compliance within the allowable +5% (-10%) 
range of 400 V. While copper losses of 2.35 kW and iron losses of 
0.46 kW indicate efficient operation under nominal conditions, su-
stained operation near maximum capacity could increase thermal 
stress, necessitating adequate cooling and monitoring to prevent 
insulation degradation. Proper load management and redistributi-
on, along with voltage analysis and future scalability considerati-
ons, are essential, particularly if additional PV generation or higher 
loads are integrated. Incorporating reactive power compensation, 
monitoring, and automation can enhance operational reliability 
and prevent system overload.

The proposed methodology provides insights for grid operators 
in determining the maximum permissible PV hosting capacity in 
LV networks. However, its implementation in real-world scena-
rios requires considerations related to cost and complexity. The 
computational approach used in this paper, based on voltage and 
conductor capacity verification, can be integrated into existing dis-
tribution network planning tools to support decision-making pro-
cesses. While the methodology itself is straightforward, its practi-
cal application may involve additional investments in monitoring 
infrastructure and advanced control systems to manage higher PV 
penetration levels effectively. Regulatory support and incentive 
structures may be required to encourage grid operators to adopt 
such analytical approaches in routine operations.

In real-world applications, PV generation is influenced by fac-
tors such as cloud cover, shading, panel aging, and seasonal varia-
tions, leading to deviations from expected production levels. These 
fluctuations can impact voltage profiles and the overall capacity 
of PV systems to offset household consumption. Lower-than-
expected PV output may reduce the extent of voltage rise but can 
also limit the benefits of distributed generation in reducing grid 
dependence.

To account for these uncertainties, future research should 
explore probabilistic modeling approaches that incorporate varia-
bility in solar irradiance and load fluctuations. Integrating real-time 
monitoring and adaptive control mechanisms could help mitigate 
the effects of variable PV output, enhancing overall system stabi-
lity and efficiency.

VI. Conclusion
This research analyzed the integration of PV systems into LV 

networks, focusing on voltage and conductor capacity. Using a 
systematic approach, the study demonstrated that PV capacities up 
to 8 kW could be integrated effectively while maintaining voltage 
levels within the permissible range (+5%, -10% of 400 V) and en-
suring that conductor currents remain below thermal limits.

Key findings indicate that:

1. The tested conditions maintain acceptable voltage variations 
in the LV network, even at higher levels of PV penetration. 
However, the approach highlights the risk of overvoltage is-
sues in scenarios of peak solar irradiance, particularly for sys-
tems exceeding 8 kW capacity.

2. Forecasted PV production values, obtained through neural 
network-based predictions, closely align with modeled data, 
showcasing the reliability and accuracy of the predictive 
model.

To address potential challenges in scenarios with increased PV 
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penetration, the following recommendations are proposed:

• Incorporation of ESS to absorb excess energy during peak 
production and release it during periods of high demand, miti-
gating voltage fluctuations.

• Network upgrades such as increasing conductor cross-sec-
tional areas or upgrading transformers, are critical to support 
higher PV capacities.

• Implementing real-time monitoring and control systems, in-
cluding smart inverters and automated demand response, will 
enhance the dynamic management of voltage and current 
levels.

• Policymakers and grid operators should adopt iterative and 
predictive methodologies for network design, ensuring long-
term scalability and reliability.

By adopting these strategies, LV networks can support the tran-
sition to renewable energy systems while maintaining operational 
efficiency and stability. Future research should explore dynamic 
hosting capacity models and integrate stochastic methods to better 
account for uncertainties in load and generation patterns. This will 
further enhance the adaptability and resilience of power distribu-
tion systems in the face of growing renewable energy integration.
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