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SUMMARY
Power system dynamic stability is one of key issues system engineers face. Oscillations that regularly occur in the system, limit the transmission ca-
pability of the network. The need to study the stability of power systems has been increasingly growing along with the development of power systems 
and their grouping into large interconnections. The focus of this paper is determining the dynamic stability of a synchronous generator, and thus the 
power system, by applying the general theory of stability of dynamic systems. Furthermore, the procedure for the initial adjustment of the parameters 
of a conventional (IEEE3 type PSS1A) stabilizer of electromechanical oscillations is briefly described based on the frequency response analysis of a 
linear generator model also known as the Heffron-Phillips generator model.
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1. INTRODUCTION
Power system dynamic stability is one of key issues system engineers 
face as the electricity supply chain is inherently non-linear, interconnected 
and can be affected by various disturbances [1]. Oscillations that regularly 
occur in the system, limit the transmission capability of the network. Due 
to the continuous increase in the integration of renewable energy sources 
(RES), power systems nowadays operate close to the limits of dynamic 
stability. The notion of dynamic stability of the power system is related to 
the problem of low-frequency (in the order of 0,2 - 3 Hz) electromechanical 
oscillations that occur due to small operating disturbances in the system 
and arise from the physical properties of synchronous generators [2]. In-
sufficiently damped electromechanical oscillations, or more precisely, 
power fluctuations, limit the transmission of electricity. If these oscillations 
are not damped at all, the protection system is activated and the generator 
is separated from the network. The failure of one generator can often cau-
se considerable disturbances to the remaining generators in the system 
and the consequent loss of synchronism can lead to the breakdown of the 
entire system. In worst-case scenario, this can result in the breakdown of 
the entire power system. Complex mathematical problems regarding the 
operation of a power system are solved by different heuristic algorithms. 
Perhaps one of the most popular solutions in this field is the application 
of particle swarm optimization (PSO) [3][4][5][6][7][8][9]. However, methods 
such as simulated annealing (SA)[10], differential evolution (DE)[11], arti-
ficial bee colony (ABC)[12][13][14], Tabu search (TS)[15] and the genetic 
algorithm (GA)[16][17] are also being used. These algorithms were deve-
loped by observing the social behavior of living creatures and eventually 
became models applied in optimization methods. Efficient damping of 
electromechanical oscillations can be achieved by implementing electro-

mechanical oscillation stabilizers in digital synchronous generator excitati-
on control systems. Power system stabilizers (PSSs) are incorporated into 
the system in order to provide the damping torque necessary to suppress 
oscillations and are used to improve system reliability [18]. The adoption 
of PSSs started along with the very development of the power system [3] 
and has been explored by numerous research studies [19]. These studies 
analyzed various techniques for tuning PSS parameters. Some focused on 
robust control [20][21][22], others on optimization methods [23]. In more 
recent times, modules of artificial intelligence (AI) also found their way to 
system stability issues through the application of fuzzy [24][25] and neuro-
fuzzy logic [26][27]. The majority of these approaches focus on angular 
speed deviation (∆ωr). Some techniques that use this approach suffer from 
computational complexity, require a significant amount of memory or are 
non-adaptive to changing operating conditions and different system con-
figurations [3].

The focus of this paper is determining the dynamic stability of a synchro-
nous generator, and thus the power system, by applying the general the-
ory of stability of dynamic systems. Furthermore, the procedure for the 
initial adjustment of the parameters of a conventional (IEEE3 type PSS1A) 
stabilizer of electromechanical oscillations is briefly described based on 
the frequency response analysis of a linear generator model also known 
as the Heffron-Phillips generator model. The paper is organized as follows. 
After the introduction and a literature review of the subject matter in secti-
on 1, section 2 describes the dynamic stability of a synchronous genera-
tor. In section 3, the possibilities for improving the dynamic stability using 
electromechanical oscillation stabilizers are presented and elaborated. 
Section 4 concludes the paper.
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2. DYNAMIC STABILITY OF A 
SYNCHRONOUS GENERATOR
The need to study the stability of power systems has been increasingly 
growing along with the development of power systems and their grouping 
into large interconnections. Today, as we witness a surge of renewable 
energy sources (RES), system stability issues seem to be more important 
than ever. Power system stability is defined as »the ability of a system to 
remain in its initial state after a disturbance or to assume a new equilibrium 
state, given that the system state variables remain within the limits that en-
sure system integrity« [20]. Depending on the observed physical quantity, 
the stability of the power system can be divided into three types: angular, 
frequency and voltage. Angular stability refers to the ability of synchronous 
generators in the power system to remain in synchrony after a disturbance. 
Depending on the magnitude of the disturbance, it can be divided into 
(1) stability during large disturbances (transient stability) and (2) stability 
during small disturbances (dynamic stability). Although large disturbances 
such as short circuits and outages of large generating units posed as the 
greatest threat to the power system in recent decades, more and more 
attention is paid to the system’s behavior during small disturbances that 
result in low-frequency electromechanical oscillations, i.e. oscillations of 
characteristic synchronous generator variables.

2.1.ELECTROMECHANICAL OSCILLATIONS 
EXAMPLE
The occurrence of electromechanical oscillations is easiest to understand 
on the example of changing the operating point of the generator shown 
in Figure 1.

Figure 1 Occurrence of electromechanical oscillations

By abruptly changing the voltage reference value Ug with 1 p.u. at 0,9 p.u., 
the generator switches from characteristic P1(δ) to characteristic P2(δ). Due 
to the inertia of the rotor, load angle (δ) cannot be changed immediately, 
so the output electric power (Pe) falls to a value corresponding to point B. 
Since at point B the input mechanical power (Pm) is greater than the electri-
cal one, the acceleration force accelerates the machine which causes the 
electric power and the load angle to increase. At point C, the electrical and 
mechanical power are of equal value (Pe = Pm), but the rotational speed 
is higher than synchronous (ω > ωs) which is why the generator will not 
steady in the equilibrium position, but will rather continue to increase the 
output electrical power. As the electrical power increases, the (negative) 
amount of acceleration power increases. At point D, the machine has a 
synchronous speed (ω = ωs) and a maximum negative acceleration, which 
is why it starts to slow down and the load angle decreases. At point C, the 
electrical and mechanical power are equal (Pe = Pm), but the speed is less 
than synchronous (ω < ωs), so the generator will not steady in the equilibri-
um position, but will accelerate to point B, reducing the output electrical 
power. The described process then starts from the beginning and over 
time it is attenuated after which the generator assumes an equilibrium sta-
te at point D (Pe = Pm).

2.2. DYNAMIC STABILITY ANALYSIS OF A 
SYNCHRONOUS GENERATOR
The equation of moment balance on the axis of a synchronous machine in 
the generator mode is expressed by (2.1) [28]:
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If the left and right equations in expression (2.4) are multiplied by the sync-
hronous rotational speed ωsm, the following equation is obtained:
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Where: H – inertia constant [s], Wk – kinetic energy of the rotor at 

synchronous speed [J] and Sn – nominal apparent power of the synchronous 
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corresponds to the load angle of the generator. Therefore, expression (2.9) can be 
written as: 
 
 

  
  
 
  
      
            

  
 
  
   

 
 
(2.10) 

 
(2.10)

or abbreviated as:

6 
 
 

or abbreviated as: 
 
   

  
  
   
           

  
   

 
(2.11) 

 
Where: ωs – synchronous speed expressed in electrical [rad/s], p – number of 

pole pairs of a synchronous generator, δ – load angle of the synchronous generator 
expressed in electrical [rad] and      

  
  – o general damping coefficient [Nm]. If 

left and right sides of the equation in expression (2.11) are divided by the nominal 
apparent power of the generator, the following expression is obtained: 
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Expression (2.12), in which all quantities are expressed in unit values 

(hereinafter p.u.), is called the oscillation equation and represents the basis for the 
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2.3. Linearization of the oscillation equation 
 

As stated earlier, the oscillation equation is a nonlinear differential equation. 
The reason for this is the highly nonlinear dependence of the output electric power 
on the load angle, which is given by the expression: 
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Where: Eq – induced electromotive force in the armature of the synchronous 

generator [p.u.], Ug – voltage at the terminals of the synchronous generator [p.u.], xd 
– actance of the synchronous generator in the longitudinal axis [p.u.] and xq – 
reactance of the synchronous generator in the transverse axis [p.u.]. For the 
purposes of dynamic stability analysis, it’s possible to linearize the output 
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Where: Eq – induced electromotive force in the armature of the synchrono-
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rator [p.u.], xd – actance of the synchronous generator in the longitudinal 
axis [p.u.] and xq – reactance of the synchronous generator in the transver-
se axis [p.u.]. For the purposes of dynamic stability analysis, it’s possible 
to linearize the output characteristic of the synchronous generator, i.e. to 
approximate it with the tangent at the operating point (Pe0, δ0) as shown in 
Figure 2.

Figure 2 Linearization of the output characteristic of a synchronous generator

By linearizing the output characteristic of the synchronous generator in the 
vicinity of the operating point (Pe0, δ0), the expression is obtained:
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Where: Pm0 – input mechanical power at the initial operating point 
[p.u.], ΔPm – change of input mechanical power [p.u.], Pe0 – electrical 
power of the synchronous generator at the initial operating point [p.u.], 
ΔPe – change of electric power of the synchronous generator [p.u.], δ0 – 
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load angle of the synchronous generator at the initial operating point 
[rad] and Δδ – change of load angle of the synchronous generator [rad]. 
Since before the disturbance, the synchronous generator was in an 
equilibrium state in which Pe = Pm (2.19), the following expression is 
obtained:
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System (2.21) represents the oscillation equation which, for the purposes of 

analyzing the dynamic stability of a synchronous generator, is linearized in the 
vicinity of the operating point in which the generator was located before the 
disturbance, i.e. the transient. In Figure 3, the basic model of the linearized 
oscillation equation is presented. 
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2.4. MODEL OF THE OSCILLATION EQUATION 
IN THE STATE SPACE

The analysis of the stability of complex dynamic systems, such as the 
electric power system, starts from the system model in state space. The 
model of a dynamic system in state space is described by a system of 
equations:
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Where the system matrix has a special significance in the stability analysis: 
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Namely, the characteristic polynomial of system A(λ) according to [28] is 

obtained, with the knowledge of the matrix of system A, according to the expression: 
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Where: I denotes the unit matrix. By further elaboration of the expression 
(2.25) we get: 
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Furthermore, by solving the equation A(λ) = 0, the so-called eigenvalues of 

the system are obtained. Since this equation is a characterized by a second-order 
polynomial, two eigenvalues are obtained: 
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As in reality for a synchronous generator operating in an electric power 

system it is true that in expression (2.27) the subtractor under the root is larger 
than the subtractor, the eigenvalues are conjugate complex quantities. Conjugate 
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                 (2.25) 
 

Where: I denotes the unit matrix. By further elaboration of the expression 
(2.25) we get: 
 
          

    
     
   (2.26) 

 
Furthermore, by solving the equation A(λ) = 0, the so-called eigenvalues of 

the system are obtained. Since this equation is a characterized by a second-order 
polynomial, two eigenvalues are obtained: 
 

       
 
   

   
     

     
   (2.27) 

 
As in reality for a synchronous generator operating in an electric power 

system it is true that in expression (2.27) the subtractor under the root is larger 
than the subtractor, the eigenvalues are conjugate complex quantities. Conjugate 

(2.25)

Where: I denotes the unit matrix. By further elaboration of the expression 
(2.25) we get:

9 
 
 

The analysis of the stability of complex dynamic systems, such as the electric 
power system, starts from the system model in state space. The model of a dynamic 
system in state space is described by a system of equations: 
 
          

     
 
(2.22) 

 
Where:     – derivation vector of system state variables, x – vector of system 

state variables, u – vector of system input variables, y – vector of system output 
variables, A – system matrix, B – management distribution matrix and C – output 
matrix. The linearized oscillation equation of the synchronous generator written in 
the form of system (2.21) can be represented in the state space by a system of 
matrix equations: 
 

 

 
   

  
     

  
        
   

         
 
   
  

        

                 
(2.23) 

 
Where the system matrix has a special significance in the stability analysis: 

 

     
 
        
   

  (2.24) 

 
Namely, the characteristic polynomial of system A(λ) according to [28] is 

obtained, with the knowledge of the matrix of system A, according to the expression: 
 
                 (2.25) 
 

Where: I denotes the unit matrix. By further elaboration of the expression 
(2.25) we get: 
 
          

    
     
   (2.26) 

 
Furthermore, by solving the equation A(λ) = 0, the so-called eigenvalues of 

the system are obtained. Since this equation is a characterized by a second-order 
polynomial, two eigenvalues are obtained: 
 

       
 
   

   
     

     
   (2.27) 

 
As in reality for a synchronous generator operating in an electric power 

system it is true that in expression (2.27) the subtractor under the root is larger 
than the subtractor, the eigenvalues are conjugate complex quantities. Conjugate 

(2.26)

Furthermore, by solving the equation A(λ) = 0, the so-called eigenvalues 
of the system are obtained. Since this equation is a characterized by a 
second-order polynomial, two eigenvalues are obtained:

9 
 
 

The analysis of the stability of complex dynamic systems, such as the electric 
power system, starts from the system model in state space. The model of a dynamic 
system in state space is described by a system of equations: 
 
          

     
 
(2.22) 

 
Where:     – derivation vector of system state variables, x – vector of system 

state variables, u – vector of system input variables, y – vector of system output 
variables, A – system matrix, B – management distribution matrix and C – output 
matrix. The linearized oscillation equation of the synchronous generator written in 
the form of system (2.21) can be represented in the state space by a system of 
matrix equations: 
 

 

 
   

  
     

  
        
   

         
 
   
  

        

                 
(2.23) 

 
Where the system matrix has a special significance in the stability analysis: 

 

     
 
        
   

  (2.24) 

 
Namely, the characteristic polynomial of system A(λ) according to [28] is 

obtained, with the knowledge of the matrix of system A, according to the expression: 
 
                 (2.25) 
 

Where: I denotes the unit matrix. By further elaboration of the expression 
(2.25) we get: 
 
          

    
     
   (2.26) 

 
Furthermore, by solving the equation A(λ) = 0, the so-called eigenvalues of 

the system are obtained. Since this equation is a characterized by a second-order 
polynomial, two eigenvalues are obtained: 
 

       
 
   

   
     

     
   (2.27) 

 
As in reality for a synchronous generator operating in an electric power 

system it is true that in expression (2.27) the subtractor under the root is larger 
than the subtractor, the eigenvalues are conjugate complex quantities. Conjugate 

(2.27)

As in reality for a synchronous generator operating in an electric power 
system it is true that in expression (2.27) the subtractor under the root is 
larger than the subtractor, the eigenvalues are conjugate complex quan-
tities. Conjugate complex pairs of eigenvalues are generally indicators of 
the inherent oscillatory behavior of the system [29]. Therefore, a synchro-
nous generator in a power system can be considered an oscillating system 
in which, during transients, there is an interaction or exchange of energy 
between the rotor of the unit and the rest of the power system.

2.5. INFLUENCE OF EIGENVALUE CHARACTER 
ON DYNAMIC STABILITY

Eigenvalues generally take the form of:
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Where: Pm0 – input mechanical power at the initial operating point [p.u.], 

ΔPm – change of input mechanical power [p.u.], Pe0 – electrical power of the 
synchronous generator at the initial operating point [p.u.], ΔPe – change of electric 
power of the synchronous generator [p.u.], δ0 – load angle of the synchronous 
generator at the initial operating point [rad] and Δδ – change of load angle of the 
synchronous generator [rad]. Since before the disturbance, the synchronous 
generator was in an equilibrium state in which Pe = Pm (2.19), the following 
expression is obtained: 
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System (2.21) represents the oscillation equation which, for the purposes of 

analyzing the dynamic stability of a synchronous generator, is linearized in the 
vicinity of the operating point in which the generator was located before the 
disturbance, i.e. the transient. In Figure 3, the basic model of the linearized 
oscillation equation is presented. 
 

 
 

Figure 3 Basic model of the linearized oscillation equation 
 

2.4. Model of the oscillation equation in the state space 
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of the damping coefficient D, or the stability of the positive damping 
moment. Interestingly, the synchronous generator begins to lose sta-
bility only at the moment of changing the sign of the real part of the 
eigenvalues. Therefore, the points to which it applies are the following:

10 
 
 

complex pairs of eigenvalues are generally indicators of the inherent oscillatory 
behavior of the system [29]. Therefore, a synchronous generator in a power system 
can be considered an oscillating system in which, during transients, there is an 
interaction or exchange of energy between the rotor of the unit and the rest of the 
power system. 
 
2.5. Influence of eigenvalue character on dynamic stability 
 

Eigenvalues generally take the form of: 
 
                         (2.28) 
 

Real part of the eigenvalue represents the attenuation, while the imaginary 
part represents the oscillation frequency of the system. A dynamic system is stable 
if the real parts of all its eigenvalues are less than zero [29]: 
 
                   (2.29) 
 

If the above is applied to a synchronous generator in a power system whose 
typical values are given by expression (2.27), it is obvious that the dynamic stability 
of the generator is conditioned by a positive value of the damping coefficient D, or 
the stability of the positive damping moment. Interestingly, the synchronous 
generator begins to lose stability only at the moment of changing the sign of the real 
part of the eigenvalues. Therefore, the points to which it applies are the following: 
 
                   (2.30) 
 

Together, these numbers form the limit of dynamic stability. In Figures 4-6, 
possible responses of the synchronous generator depending on the character of the 
eigenvalues are shown. 
 

 
 

Figure 4 Re{λ1,2} < 0, The synchronous generator is stable 
 

(2.30)

Together, these numbers form the limit of dynamic stability. In Figures 4-6, 
possible responses of the synchronous generator depending on the cha-
racter of the eigenvalues are shown.

Figure 4 Re{λ1,2} < 0, The synchronous generator is stable

Figure 5 Re{λ1,2} = 0, The synchronous generator is at its stability limit

Figure 6 Re{λ1,2} > 0, The synchronous generator is oscillatory unstable

3. IMPROVING DYNAMIC 
STABILITY THROUGH THE USE OF 
ELECTROMECHANICAL OSCILLATION 
STABILIZERS

In the past, the problem of damping electromechanical oscillations was 
solved by installing a larger number of damping windings in the pole shoes 
or the rotor body, depending on the type of machine. In 1969, de Mello 
and Concordia proposed the introduction of an additional control circuit in 
the excitation systems of synchronous generators with the aim of damping 
electromechanical oscillations [30]. This additional control circuit was later 
called the Power System Stabilizer. The role of the stabilizer is to recognize 
the occurrence of electromechanical oscillations and acting through an 
automatic voltage regulator in an artificial way to create an additional com-
ponent of damping torque on the rotor which is in phase with the change 
of speed. Nowadays, the stabilizer of electromechanical oscillations is an 
indispensable part of digital excitation control systems [31].

Figure 7 Classical excitation control circuit structure with PSS
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From the transfer function of the stabilizer it can be seen that it consists of: 

Kpss high-pass filter, time constant Tf and phase compensators. Among the 
mentioned members of the transfer function of the stabilizer, phase compensators 
play a crucial role. This is due to the fact that a necessary condition for the correct 
operation of the stabilizer is that the artificially created damping torque component 
is in phase with the change of speed. Therefore, it is necessary to compensate for 
the phase delay introduced by other components in the excitation system (e.g. PI 
voltage regulator). The mentioned phase delay compensation is achieved by phase 
compensators. In addition to phase compensators, an important role is played by a 
high-pass filter that must remove DC signals in order for the stabilizer to operate 
only during transient states of the system. 
 
3.2. Heffron-Phillips synchronous generator model 
 

The initial adjustment of the parameters of the electromechanical oscillation 
stabilizer is performed before commissioning and based on the analysis of frequency 
responses of the linear model of the synchronous generator (also known as the 
Heffron-Phillips model of the generator). The mentioned model is extremely precise 
in the environment of a certain operating point for which it was made [32]. In 
addition, it requires knowing only basic parameters of the synchronous generator 
which makes it suitable for synthesis of stabilizers and control circuits in general. 
The Heffron-Phillips generator model is shown in Figure 8. 
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3.2. HEFFRON-PHILLIPS SYNCHRONOUS 
GENERATOR MODEL
The initial adjustment of the parameters of the electromechanical oscillati-
on stabilizer is performed before commissioning and based on the analysis 
of frequency responses of the linear model of the synchronous generator 
(also known as the Heffron-Phillips model of the generator). The mentioned 
model is extremely precise in the environment of a certain operating point 
for which it was made [32]. In addition, it requires knowing only basic para-
meters of the synchronous generator which makes it suitable for synthesis 
of stabilizers and control circuits in general. The Heffron-Phillips generator 
model is shown in Figure 8.

Figure 8 Heffron-Phillips model of the synchronous generator

3.3. DETERMINATION OF THE TIME 
CONSTANT OF A HIGH-PASS FILTER
It is not necessary to explicitly determine the cut-off frequency, i.e. the time 
constant of the high-pass filter, as the values of the filter time constant 
between 1 and 20 seconds fully meet the set requirements. The amplitude-
frequency characteristic of the high-pass filter is shown in Figure 9.

Figure 9 Amplitude-frequency characteristic of high-pass filter

3.4. DETERMINATION OF TIME CONSTANTS 
OF BLOCKS FOR PHASE COMPENSATION
As mentioned earlier, the elements in the excitation system introduce a 
certain phase delay into the stabilizing signal generated by the electro-
mechanical oscillation stabilizer. In Figure 10, the phase-frequency cha-
racteristic of an excitation system is shown. At the frequency of electro-
mechanical oscillations, which in this example is 1,94 Hz, the excitation 
system introduces a phase delay in the amount of 126,5°.

Figure 10 Phase-frequency characteristic of the excitation system before 
compensation

With correctly set phase compensation blocks, the phase delay at the 
frequency of electromechanical oscillations is almost 0 °, which allows the 
creation of »pure« damping torque on the rotor, which is in phase with 
the change of speed. The phase-frequency characteristic of the excitation 
system after compensation is shown in Figure 11.

Figure 11 Phase-frequency characteristic of the excitation system after 
compensation
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3.5. SIMULATION OF SYNCHRONOUS 
GENERATOR WITH AND WITHOUT AN 
ELECTROMECHANICAL OSCILLATION 
STABILIZER
In Figures 12-15, the responses of the characteristic variables of the sync-
hronous generator during the abrupt change of the reference value of the 
active power from 0,5 p.u. to 0,6 p.u. and for cases with the electromecha-
nical oscillation stabilizer turned off and on are shown.
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4. CONCLUSION

The reliability of power supply is of paramount importance not only for the 
economy, but for the wellbeing of the entire society. The power system 
consists of countless elements that deliver electric energy in real time. Due 
to its gravity and size, it’s vulnerable to a number of disturbances during its 
operation. In recent years, this problem is even more emphasized due to 
the increasing share of renewables. This paper deals with the problem of 
dynamic stability of synchronous generators in a power system. The litera-
ture review presented in the introduction segment revealed the existence 
of numerous techniques being applied for enhancing the dynamic stability 
of the power system. The notion of dynamic stability is related to the pro-
blem of low-frequency electromechanical oscillations that occur due to 
small driving disturbances and arise from the physical properties of sync-
hronous generators. Namely, the eigenvalues of a synchronous generator 
occur in conjugate complex pairs, which indicate the oscillatory nature of 
the synchronous generator during network operation. The character of the 
eigenvalues determines the behavior of the synchronous generator after 
an operational disturbance. It is found that a synchronous generator is sta-
ble if the real parts of the eigenvalues are less than zero and that the ge-
nerator begins to lose stability at the moment of a transition of eigenvalues 
from the left to the right side of the complex plane. 
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(Footnotes)

1  Statements expressed in the 
paper are author’s own opini-
ons, they are not binding for the 
company/institution in which 
author is employed nor they 
necessarily coincide with the 
official company/institution’s 
positions.
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