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SUMMARY
The article analyzes the operational reliability of filter on the gas turbine compressor intake and the operational reliability of electric transformer 
connector. Empirical data (statistical sample) were collected to determine the failure density function f (t), the hazard function ω (t), and the expected 
value of mean time to failure MTTF. The numerical model was created in the Minitab 19 software tool. The Anderson-Darling test was used to accept 
or reject the hypothesi
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1. INTRODUCTION

Reliability is defined as a measure of a device’s ability to operate without 
failure, and it mathematically predicts the behavior of a system or devi-
ce under expected operating conditions [4]. The reliability of a system is 
divided into structural and operational. Structural reliability refers to the 
construction of the system, ie it is determined mathematically by the ma-
nufacturer, while operational reliability is determined from the operation of 
the system, and on the basis of empirical data [2]. 

The first part of the paper presents an analysis of the operational reliability 
of the filter on the gas turbine compressor intake. The intake air filtration 
system is crucial for the successful operation of a gas turbine. The filtrati-
on system protects the gas turbine from harmful impurities in the outside 
air, which can lead to problems such as output power fluctuations, ero-
sion, dirt, and corrosion. The main cause of the problem is the dirt of the 
compressor. In such cases, operators often use compressor washing as 
a measure, for a quick repair and, and to restore output power and effici-
ency. The success of this measure is short-lived because cleaning simply 
washes away contaminants from the front blades to the inner blades of 
the turbine. Turning off the turbine allows for significantly more efficient 

washing, but causes costly downtime. In any case, the loss of production 
capacity is reversed due to contaminants that are continuously generated 
and damage the blades and other components. If the compressor suction 
filter is damaged or dirty, the power plant operation must be stopped and 
the filter replaced. The aim of this paper is to develop a model of preventive 
maintenance, in order to be able to predict the potential failure of the filter 
based on empirical data and to prevent the sudden exit of the power plant 
from the operation. Filters can also be purchased in advance and kept in 
stock, thus reducing the logistical maintenance time, which will speed up 
the return of the power plant to operation, or reduce financial losses due 
to production downtime. 

The second part of the paper presents an analysis of the operational relia-
bility of electric transformer medium voltage connector in the transformer 
substation system 20/0.4 kV with installed power of 630 kVA. Due to pro-
longed exposure to high current flows, over time, the cable head insulation 
may break. In this case the protection device will disconnect transformer 
from the distribution system and the consumers are left without electricity 
until the fault is repaired. The aim of this paper is to develop a model of 
preventive maintenance, in order to be able to predict the potential failure 
of the connector in transformer station based on empirical data and to pre-
vent the sudden electric power failure that would left consumers without 
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electricity and cause financial losses to electric energy seller. The main 
objective is to determine the optimal point for preventive replacement of 
the transformer connector subsystem.

2. MATHEMATICAL MODEL OF 
RELIABILITY ANALYSIS OF THE FILTER 
OF THE GAS TURBINE COMPRESSOR 
INTAKE
Researching the reliability of the technical composition is very important 
because in this way failures can be predicted, and financial losses re-
sulting from the failure of the system or a device can be reduced [7]. The 
mathematical model of reliability analysis is determined with two functions, 
namely the reliability function R (t), and the failure intensity function ω (t) 
[8], [9]. Reliability expresses the numerical probability of a device operat-
ing without failure during a certain time interval and under the operating 
conditions for which the device is intended, while the failure intensity func-
tion shows how the failure intensity changes during the life cycle of the 
system or device [3]. The reliability of a system is calculated according to 
the formula:
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where F (t) - a function of unreliability, and f (t) - function of failure prob-
ability density.

Another important quantity is the expected time to failure (MTTF), which 
represents the average time that the system or device works before the 
failure, and is calculated according to the formula [2], [13]:
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where fe(t) is fault probability function.
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4. RESEARCH RESULTS 

4.1. RESEARCH RESULTS OF THE OF 
RELIABILITY ANALYSIS OF THE FILTER OF 
THE GAS TURBINE COMPRESSOR INTAKE
The empirical data used in the analysis are given in the following table:

Table I. Operating time between failures and ordinal number of failures

Ordinal number of the fault Operating time to failure [h]

1 35

2 44

3 114

4 92

5 163

6 113

7 115

8 197

9 44

10 258

11 532

12 114

The results of the research show that the collected empirical data best fol-
low the log-logistic function, ie for it, the value of the Anderson-Darling test 
is the lowest, although the three-parameter Weibull distribution and the 
three-parameter log-normal distribution are very close to the Anderson-
Darling test values. Therefore, the hypothesis is rejected, and the hypoth-
esis  is accepted. In reliability theory, the Weibull distribution is the most 
commonly used distribution because it can be applied to model many 
different data sets, that is, it is very flexible [1], [10]. The log-normal dis-
tribution is typically used for model system or device failures caused by 
corrosion or chemical reactions. Log-logistic distribution is used in various 
fields, such as survival analysis, hydrology, economics, etc [11]. Also, log-
logistic distribution well approximates normal and log-normal distribution. 
Although the values   of the Anderson-Darling test are close for these three 
distributions, the log-logistic distribution was selected, and it is used for 
further calculations.

Figure 1. results of the Anderson-Darling test for the collected empirical data

Figure 2. Hypothesis testing

Figure 3. Hypothesis testing

Figure 4. Hypothesis testing
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Given the high required degree of safety of 30%, the required time of pre-
ventive maintenance of the filter is t = 88 h of operation.

4.2. RESEARCH RESULTS OF THE 
OF RELIABILITY ANALYSIS OF THE 
TRANSFORMER CONNECTOR SUBSYSTEM
Table II. shows the empirical data used for analysis. Fault and duration 
data are displayed for connector failures in different transformer stations in 
which the electric connector operates under the similar conditions.

Table II. Empirical data used for analysis

Number 
of the 

connector

Operating time to failure 
Ki=SKOi

Logistic time 
of corrective 
maintenance

Active time 
of corrective 
maintenance

Duration of 
corrective 

maintenance
TRi [years] TRi [hours] TKLi [hours] TKAi [hours] TKi [hours]

1 38,64 338718 8,25 1 9,25
2 42,45 372117 9,9 1 10,9
3 37,28 326797 4,82 1 5,82
4 38,66 338894 0,22 0,23 0,45
5 29,23 256230 2,37 1 3,37
6 23,98 210209 0,11 0,12 0,23
7 18,75 164363 0,45 0,45 0,9
8 46 403236 4,82 1 5,82
9 35,88 314524 3,17 1 4,17
10 51,44 450923 0,75 1 1,75
11 40,1 351517 0,44 0,44 0,88
12 48,83 428044 2 1 3
13 44,65 391402 4,77 1 5,77

Statistical data processing was performed using the Minitab 19 software 
tool, based on the data from Table II. The results show that the collected 
empirical data for operating time to failure best follow the Weibull distribu-
tion function because for it, the value of the Anderson-Darling test is the 
lowest, although the log-logistic distribution is very close. 

Although the values   of the log-logistic Anderson-Darling test is close, the 
Weibull distribution was selected, and it is used for further calculations.

Figure 5. Different distributions for failure probability

Figure 6. Weibull distribution parameters for failure probability
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where c is shape parameter and a is scale parameter of Weibull distribution. 

The values of these parameters were selected based on the results ob-
tained by analysis in Minitab, and they are as follows: c = 5,17321 ;  a = 
364591  . If we insert it in equation (18) we get:
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Figure 8. Loglogistic distribution parameters for maintenance time probability

The second statistical processing was made with corrective maintenance 
times. Figure 8. shows that the expected logistic time for corrective main-
tenance of EK (t) = 6,91 hours.

The third statistical processing was made with logistic corrective mainte-
nance times. Figure 10. shows that the expected logistic time for logistic 
corrective maintenance of EKL (t) = 9,76 hours.

Figure 9. Different distributions for logistic maintenance time probability

Figure 10. Loglogistic distribution parameters for logistic maintenance time 
probability

The fourth statistical processing was made with active corrective main-
tenance times. Figure 12. shows that the expected active time for active 
corrective maintenance of EKA (T) = 0,95 hours.

Figure 11. Different distributions for active maintenance time probability
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Figure 12. Loglogistic distribution parameters for active maintenance time 
probability

Table III. shows the numerical models for all four statistical processings.

Table III. Numerical model - presentation of theoretical function of the probability 
density of characteristic events and the expected time to their of origin

Event

/

times

Theoretical probability 
distribution Numerical model (probability density function) Expected time 

Fault (K=SKO)

Twoparameter Weibull 
distribution

Shape parameter 
c=5,17321  

Scale parameter 
a=364591
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A graph of the function of relative maintenance costs was drawn in program 
Mathcad 15 and shown in Figures 13., 14. 
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By inserting parameters of maintenance distribution and costs as well as 
operational reliability of the transformer connector subsystem into the re-
lation (3) we get the function of the relative costs of maintenance for tran-
sformer connector subsystem:
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Figure 13. Graph of the function of relative maintenance costs cu,Re,rel(TR) for MV 
transformer connector subsystem

Figure 14. Minimum of the function of relative maintenance costs cu,Re,rel(TR) for 
MV transformer connector subsystem

Using the program Mathcad 15, the minimum of the function shown in 
Figure 14. was determined. In accordance with the obtained minimum, the 
optimal time of preventive maintenance of the medium voltage transformer 
connector subsystem is obtained. The optimal time for preventive mainte-
nance is 383313 hours or 43,73 years.

5. CONCLUSIONS
First part of the article presents the results of the analysis performed on 
the empirical data of filter failure at the gas turbine compressor intake, 
obtained from the power plant in HEP’s portfolio. The Minitab 19 software 
package was used for the analysis, and a three-parameter log-normal dis-
tribution was determined with a high level of significance, and the hypoth-
esis  was accepted. The expected uptime of the MTTF and the required 
time of preventive maintenance of the filter in relation to the required safety 
were also determined. The results obtained by the analysis can be used as 
a basis for making decisions related to the maintenance strategy, in order 
to prevent or minimize plant downtime caused by failure and thus losses. 
As said in the introduction of this paper, when the compressor suction filter 
is damaged or dirty, the power plant operation must be stopped and the 
filter replaced, so the aim of this paper is to develop a model of preventive 
maintenance, in order to be able to predict the potential failure of the filter 
based on empirical data and to prevent the sudden exit of the power plant 
from the operation. Data used for these calculations were collected during 
an extensive period of time, and they are empirical, i.e. they were collected 
from one of the powerplants from the HEP portfolio. Results of the analy-
sis shows that the required time of preventive maintenance of the filter is 
t = 88 h of operation. That means that after 88 hours of operation of the 
powerplant, there is a good chance that the malfunction will occur on the 
filter. Knowing that, filters can be purchased in advance and kept in stock, 
and speed up the return of the power plant to operation, or reduce financial 
losses due to production downtime.  Second part of the article presents 
the results of the analysis of the empirical data performed in order to de-
termine optimal time for preventive maintenance of the medium voltage 
transformer connector subsystem. The results obtained by the analysis 
can be used as a basis for making decisions related to the maintenance 
strategy in order to prevent the sudden electric power failure that would left 
consumers without electricity and cause financial losses to electric energy 
seller. The analysis showed that the optimal time for preventive mainte-
nance of transformer connector subsystem for the observed case is 43,73 
years, which means that this is not a failure that happens often, and there-
fore it is not necessary keeping of spare parts in stock, or monitoring this 
part of equipment particularly. As shown in this paper, reliability analysis 
is very useful for determing time period after which a failure may occur. 
Knowing that time period is very important because it allows preparation 
for failure (planned maintenance, keeping spare parts in stock, etc.), which 
can significantly reduce the financial losses causes by failure.
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By integrating relation (20) we obtain the operational reliability of the transformer 
connector subsystem: 
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By inserting parameters of maintenance distribution and costs as well as 
operational reliability of the transformer connector subsystem into the relation (3) 
we get the function of the relative costs of maintenance for transformer connector 
subsystem: 
 

                        
       

       
 

       
           

 

       
 

       
           

 

 (22) 

 
A graph of the function of relative maintenance costs was drawn in program 
Mathcad 15 and shown in Figures 13., 14. 
 

 
Figure 13. Graph of the function of relative maintenance costs cu,Re,rel(TR) for MV 

transformer connector subsystem 
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Figure 14. Minimum of the function of relative maintenance costs cu,Re,rel(TR) for MV 

transformer connector subsystem 
 

Using the program Mathcad 15, the minimum of the function shown in Figure 14. 
was determined. In accordance with the obtained minimum, the optimal time of 
preventive maintenance of the medium voltage transformer connector subsystem is 
obtained. The optimal time for preventive maintenance is 383313 hours or 43,73 
years. 
 
 

5. CONCLUSIONS 
 

First part of the article presents the results of the analysis performed on the 
empirical data of filter failure at the gas turbine compressor intake, obtained from 
the power plant in HEP's portfolio. The Minitab 19 software package was used for 
the analysis, and a three-parameter log-normal distribution was determined with a 
high level of significance, and the hypothesis   

  was accepted. The expected 
uptime of the MTTF and the required time of preventive maintenance of the filter 
in relation to the required safety were also determined. The results obtained by the 
analysis can be used as a basis for making decisions related to the maintenance 
strategy, in order to prevent or minimize plant downtime caused by failure and thus 
losses. As said in the introduction of this paper, when the compressor suction filter 
is damaged or dirty, the power plant operation must be stopped and the filter 
replaced, so the aim of this paper is to develop a model of preventive maintenance, 
in order to be able to predict the potential failure of the filter based on empirical 
data and to prevent the sudden exit of the power plant from the operation. Data 
used for these calculations were collected during an extensive period of time, and 
they are empirical, i.e. they were collected from one of the powerplants from the 
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