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On Minimal Cut Sets Representation with Binary 
Decision Diagrams

Reni Banov, Zdenko Šimić

Summary — Since their introduction in form of a canonical repre-
sentation of logical functions, the Binary Decision Diagrams (BDDs) 
gained a wide acceptance in numerous industrial applications. This 
paper summarizes the properties of BDD representation of Minimal 
Cut Sets (MCS) of Fault Tree (FT) models most typically encounte-
red in nuclear energetics. Cut sets from MCS are defined as paths 
from the top BDD node to terminal nodes in the BDD, on which a 
quantitative and qualitative FT analysis (FTA) is performed. The core 
of the FTA on the BDDs is performed with help of two fundamental 
algorithms, one for conditional probability evaluation and another 
for the selection of cut sets. The accuracy of conditional probability 
evaluation represents an essential feature for an unbiased quantitati-
ve analysis, such as the top event probability or the determination of 
event importance measures. The cut set selection algorithm is shown 
in a generic version introducing logical predicates for its selection cri-
teria. As it is known, the efficiency of depicted algorithms depends 
only on the number of BDD nodes used for the FT representation. In 
order to appraise the compactness of the BDD representation of FT 
models, their characteristics have herein been evaluated on several 
real-life models from the Nuclear Power Plant Krško. The extraordi-
nariness of the compactness of the BDD representation reflects in its 
ability to implement advanced dynamic analysis (i.e. what-if) of FT 
models. The efficiency of such an approach is recognized by commer-
cial vendors upgrading their FT Tools to new versions by implemen-
ting BDD based algorithms. 

Keywords — Probabilistic Safety Assessment (PSA), Fault Tree 
Analysis (FTA), Binary Decision Diagrams (BDD), Minimal Cut Sets 
(MCS)

I. Introduction

Introduced in the early 60’s as a tool for analysing failure con-
ditions of military systems [1], the Fault Tree Analysis (FTA) 
has become one of the most popular methods to deductively 

analyse undesired behaviour of complex engineering systems from 
various industries. The static Fault Tree (FT) is a directed acyclic 
graph (DAG) with a single top node representing a failure event 
under analysis. Terminal nodes at the bottom of the FT are basic 
events representing a component failure occurrence and are consi-
dered relevant for the analysis. The intermediate nodes are conditi-

ons under which the basic events propagate their occurrence to the 
top node. An example of a simple FT is given in Figure 1. In a ge-
neral view to FTA, we differentiate two types of static analysis: the 
qualitative and the quantitative [2]. Under the qualitative analysis 
the FT is typically evaluated to find minimal cut sets, minimal 
path sets, and common cause failures. Quantitative analyses are 
performed numerically with the goal of computing various reliabi-
lity measures, like system availability, mean time between failures, 
component importance measures, and others.

Fig. 1. Fault Tree example

It should be brought to attention that the FT structure represents 
a large Boolean function which depends on the occurrence of basic 
events, thereby allowing their minimization to find representation 
in form of minimal cut sets (MCSs). The conventional approach to 
FTA relies on a process of determination of minimal cuts sets from 
the FT structure by applying a simplification rule according to the 
Boolean laws. The two most common conventional approaches 
are based on top-down or bottom-up rewritings of logical formulas 
defined by intermediate FT nodes. Both approaches are computa-
tionally intensive and are resource demanding, and may, thereby, 
be applied only to determine the most significant minimal cuts ba-
sed on probability values or their size. Lately, the new techniques 
are constructed on Binary Decision Diagrams (BDDs) [3, 4] and 
Monte Carlo [5] simulation methods. The BDD method of mini-
mization of Boolean functions seems to be more powerful than 
Monte Carlo methods, though it depends on the knowledge of a 
good basic event order to achieve supremacy [6]. The advantage of 
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numerically with the goal of computing various reliability measures, like system availability, mean 
time between failures, component importance measures, and others. 
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derived from the Shannon identity 

 
𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∧ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 1𝑖𝑖𝑖𝑖)� ∨ �¬𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∧ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 0𝑖𝑖𝑖𝑖)�     (1) 

 
applied recursively to each function in expansion. Each Shannon step generates a part of a full binary 
tree with vertices structured, as shown in Figure 2, down to the bottom of the tree with two terminal 
vertices representing Boolean values {0,1}. 
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applied recursively to each function in expansion. Each Shannon 
step generates a part of a full binary tree with vertices structured, as 
shown in Figure 2, down to the bottom of the tree with two termi-
nal vertices representing Boolean values {0,1}.

Fig. 2. Shannon identity step as binary tree

The Shannon identity with BDDs is commonly expressed by 
means of the If-Then-Else (ite) construction, for instance, the tree 
structure of the function  from Figure 2 is written as

(2)

If an order of variables is the same (preserved) on each path 
from any vertices down to terminal vertices, the BDD is denoted 
as ordered BDD [7]. During the Shannon expansion the vertices 
for each unique Boolean function are generated only once, thereby 
making an ordered BDD reduced and ensuring the uniqueness of 
representation, i.e., the canonical representation of the Boolean 
function. The BDD structure allows an efficient implementation of 
usual logical operations, which makes it a suitable tool for manipu-
lating Boolean functions. 

II. BDD Method for MCS Set
From the very beginning of the application of fault tree 

analysis in nuclear energetics it has clearly come to mind, that a 
more accurate insight into the reliability of the observed system 
relies on the understanding of the complete or, at least, the most 
significant parts of failure sets (minimal cut sets MCSs). Howe-
ver, the determination of MCSs turns out complex even with very 
simple systems modelled by a coherent fault tree, dealing with at 
least two hard problems. The first, being the time complexity of 
algorithms employed for the determination of the complete or par-
tial set of MCSs, while the second relates to a space complexity of 

the same sets recording. More recently binary decision diagrams 
(BDDs) have been developed, enabling an indirect recording of fa-
ult trees by applying indicator variables for the component failure 
state within the system. 

The basic idea behind the BDD method is to define an indicator 
variable which acquires the logical value zero (false) if the basic 
event does not occur, and inversely, the logical value one (true) if 
the basic event occurred. The probability of the basic event occu-
rrence is thereby associated with the probability of true occurrence 
of the indicator variable. In this way the Bernoulli random varia-
ble is assigned to the basic event. Once the logical function repre-
sented by the FT is converted to a BDD representation, the BDD 
based method [3] can be used to find its minimal disjunctive form 
which represents a MCS set of the coherent FT. Figure 3 shows the 
BDD representation of the complete MCS set of the FT example 
from Figure 1. The dotted arrow line marks that the MCS does not 
include the event originating from the line, while the full arrow line 
stands for the event included in MCS. The full MCS set is defined 
by all paths from the top node ending at the node with value one 
(true). It is worthwhile mentioning that non-coherent FTs can be 
treated similarly with Zero Decision Diagrams (ZDDs) which are 
a variant of BDD supporting combinatorial sets [8].

Fig. 3. MCS as BDD tree

Once the BDD of the MCS set is created, an analysis can be 
performed on indicator variables with algorithms specifically 
written for the BDD structure. The qualitative analysis relies on 
the selection of MCS sets according to specific criteria. This kind 
of analysis is easily performed based on the algorithm which can 
select a subset of MCSs from BDD with predicates applied to the 
indicator variables. The underneath algorithm (Figure 4) imple-
ments a subset selection from the full MCS set represented by the 
BDD structure defined on indirect variables. 

The essence of the algorithm is to select from a full MCS set 
only cut sets for which the predicate results in true value on indirect 
variables. With a new minimal cut set the decision is rather simple, 
namely, as soon as the terminal node with value one is reached, 
the predicate on truth values of indirect variables traversed through 
the path can be applied. This part of the algorithm is entailed in 
lines 9-14. Not having reached the terminal node means that we 
still dwell on a node determined by a single indirect variable (a 
single basic event). Subsequently, we can pursue the traversal of 
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Once the BDD of the MCS set is created, an analysis can be performed on indicator variables 

with algorithms specifically written for the BDD structure. The qualitative analysis relies on the 
selection of MCS sets according to specific criteria. This kind of analysis is easily performed based 
on the algorithm which can select a subset of MCSs from BDD with predicates applied to the indicator 
variables. The underneath algorithm (Figure 4) implements a subset selection from the full MCS set 
represented by the BDD structure defined on indirect variables.  

The essence of the algorithm is to select from a full MCS set only cut sets for which the 
predicate results in true value on indirect variables. With a new minimal cut set the decision is rather 
simple, namely, as soon as the terminal node with value one is reached, the predicate on truth values 
of indirect variables traversed through the path can be applied. This part of the algorithm is entailed 
in lines 9-14. Not having reached the terminal node means that we still dwell on a node determined 
by a single indirect variable (a single basic event). Subsequently, we can pursue the traversal of the 
BDD graph via the branch containing that variable (full arrow line), assuming that the predicate 
responded in value one (true) for the part of the cut set found. Contrary to that, on a zero (false) 
responded value the traversal is carried on with the branch not containing that variable (dotted arrow 
line). This part of the algorithm from Figure 4 is displayed in lines 16-20. The lines 6-8 from the 
algorithm represent paths leading to the zero terminal node, i.e., to the node indicating that the 
minimal cut set has not been found through the path. It is important to mention that the predicate for 
the cut set selection must return a logical value even if only a part of the minimal cut set stands. For 
example, predicates conforming to that criteria are typical predicates used for the analysis, such as a 
maximal number of basic events in a cut set or a minimal cut set probability value. 

The cut set probability evaluation is performed with the assumption that basic events are 
independent, in other words, the probability value of a cut set equals to the product of probabilities 
of basic events contained in the cut set. Basically, by introducing line 17 in the algorithm a significant 
reduction of the traversal has been performed resulting in a reduction of the execution time for the 
minimal cut set selection. What is more, by introducing the concept of predicates for the cut set 
selection we have achieved a flexibility for the creation of complex selection criteria since logical 
expressions defined by predicates can be combined with common logical operators. For example, it 
is rather easy to specify criteria containing cut sets which bear a specific number of basic events and 
meet either conditions of a minimal probability value or conditions containing a specific basic event. 
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the BDD graph via the branch containing that variable (full arrow 
line), assuming that the predicate responded in value one (true) for 
the part of the cut set found. Contrary to that, on a zero (false) 
responded value the traversal is carried on with the branch not con-
taining that variable (dotted arrow line). This part of the algorithm 
from Figure 4 is displayed in lines 16-20. The lines 6-8 from the 
algorithm represent paths leading to the zero terminal node, i.e., 
to the node indicating that the minimal cut set has not been found 
through the path. It is important to mention that the predicate for 
the cut set selection must return a logical value even if only a part 
of the minimal cut set stands. For example, predicates conforming 
to that criteria are typical predicates used for the analysis, such as 
a maximal number of basic events in a cut set or a minimal cut set 
probability value.

The cut set probability evaluation is performed with the 
assumption that basic events are independent, in other words, the 
probability value of a cut set equals to the product of probabilities 
of basic events contained in the cut set. Basically, by introducing 
line 17 in the algorithm a significant reduction of the traversal has 
been performed resulting in a reduction of the execution time for 
the minimal cut set selection. What is more, by introducing the 
concept of predicates for the cut set selection we have achieved 
a flexibility for the creation of complex selection criteria since 
logical expressions defined by predicates can be combined with 
common logical operators. For example, it is rather easy to specify 
criteria containing cut sets which bear a specific number of basic 
events and meet either conditions of a minimal probability value or 
conditions containing a specific basic event. In this way we have 
achieved a significant flexibility to perform a highly specific quali-
tative and quantitative FT analysis.

Fig. 4. MCS subset selection

The second basic algorithm (Figure 5) represents the calcu-
lation procedure of the conditional probability from the paths in 
the BDD graph. Analogously to the previous algorithm the BDD 
structure is traversed in a depth first manner and conditional pro-
babilities are calculated from indicator variables encountered on 
the traversal path. Whenever we reach terminal nodes we need to 
return the probability value confirmed by the truth value of ter-
minal nodes, thus, for terminal node one the value 1.0 is returned, 
while for terminal node zero the value 0.0 is returned. This part of 
the algorithm is set forth in lines 5-10. Once an intermediate node 
is reached, by checking the truth value of the indicator variable 
from the parameter set (σ), we may decide on the continuance of 
the BDD traversal. Thus in lines 14-16 the traversal is continued in 
case of a zero (false) value indicator variable, i.e., in this case we 

are calculating the conditional probability provided that the basic 
event associated with the indicator variable did not occur. Similarly 
to that, in lines 17-19 the conditional probability is calculated assu-
ming that the particular basic event has occurred. In all other cases 
we continue with a recursive calculation of the conditional proba-
bility by traversing the BDD structure on left and right branch no-
des (line 22). It is essential to mention that the significant algorithm 
optimisation may be achieved by saving the intermediate result of 
the conditional probability calculation for that node. In this way a 
multiple calculation of conditional probabilities for the same nodes 
encountered during the traversal is avoided, which at the end, re-
sults in time efficient computation. 

Fig.5. Indirect evaluation of conditional probability from BDD

Now, a qualitative and quantitative analysis on a fault tree mo-
del may be carried out with BDDs by applying known algorithms 
for the determination of a minimal disjunctive normal form of the 
logical function presented by the coherent fault tree, which repre-
sents the logical recording of a set of minimal cuts.

III. Results and Discussion
The previous algorithms are implemented in the C/C++ pro-

gramming language and their correctness and accuracy has been 
tested on FT models from the nuclear power plant Krško. For the 
implementation of the BDD algorithm it was necessary to find a 
good basic event order by which the BDD representation of the 
FT may be traced. The following table brings characteristics of FT 
models (column B.E. stands for the number of basic events, co-
lumn Gates is the number of intermediate events) utilized in the 
testing as well as properties of the BDD representation of their 
complete MCS set. 

Table 1 
Results on NEK FT test models

FT B.E. Gates BDD MCS Ratio MCS/BDD

acp 409 674 4.583 228.242.636 49.802

chrgr 438 695 68.904 14.840.731.139.897 215.382.722

dcp 447 706 77.595 152.148.878.846.392 1.960.807.769

efw 692 957 265.401 1.769.960.840.506.752 6.669.005.921

hpsi 674 940 22.902 371.554.422.700 16.223.667

lpsi 525 760 26.754 479.582.239.771 17.925.627

sw 444 720 140.486 58.952.275.075.664 419.630.960

cored1 1319 1279 1.951.673 69.273.024.997.243.046 35.494.176.020

cored2 1377 1633 16.524.072 2.436.058.751.633.933.343 147.424.844.895
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In this way we have achieved a significant flexibility to perform a highly specific qualitative and 
quantitative FT analysis. 
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logical function presented by the coherent fault tree, which represents the logical recording of a set 
of minimal cuts. 

3 RESULTS AND DISCUSSION 

The previous algorithms are implemented in the C/C++ programming language and their 
correctness and accuracy has been tested on FT models from the nuclear power plant Krško. For the 
implementation of the BDD algorithm it was necessary to find a good basic event order by which the 
BDD representation of the FT may be traced. The following table brings characteristics of FT models 
(column B.E. stands for the number of basic events, column Gates is the number of intermediate 
events) utilized in the testing as well as properties of the BDD representation of their complete MCS 
set.  

 
Table 1: Results on NEK FT test models 

FT B.E. Gates BDD MCS Ratio MCS/BDD 
acp 409 674 4.583 228.242.636 49.802 

chrgr 438 695 68.904 14.840.731.139.897 215.382.722 
dcp 447 706 77.595 152.148.878.846.392 1.960.807.769 
efw 692 957 265.401 1.769.960.840.506.752 6.669.005.921 
hpsi 674 940 22.902 371.554.422.700 16.223.667 
lpsi 525 760 26.754 479.582.239.771 17.925.627 
sw 444 720 140.486 58.952.275.075.664 419.630.960 

cored1 1319 1279 1.951.673 69.273.024.997.243.046 35.494.176.020 
cored2 1377 1633 16.524.072 2.436.058.751.633.933.343 147.424.844.895 
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The number of cut sets in MCS set (column MCS) for the te-
sted FT models ranges between 108  and 1018 , while the BDD size 
(column BDD) for the most complex model (cored2) comes to 16.5 
million nodes. Since the nodes are represented with a structure of 
32 bytes sized we can conclude that the full MCS set for the most 
complex model shall need approx. 500MB RAM memory. It is 
hard to conceive how much memory it would take for conven-
tional FTA programmes to represent a complete MCS set of the 
cored2 model.

Apart from the compact representation, the BDD structure 
allows an efficient execution of the mentioned algorithms; e.g., the 
selection of the MCS subset according to predicate criteria for a 
cut set length equalling to 5 basic events lasts for approx. 2 seconds 
on a desktop PC with 8GB RAM and an Intel i5 processor. The 
execution time of the algorithm is predominantly influenced by the 
selection of the traversal branch which does not meet the predica-
ted condition, i.e., on the branch with a basic event for which the 
predicate returns a false value in the early traversal phase (see line 
16 of algorithm in Figure 4).

Also, the top event conditional probability calculation by me-
ans of the algorithm from Figure 5 takes on an average less than 
one second even for the probability of a top event without any 
condition on indicator variables. This is the most complex case, 
since BDD traversals are performed through each node. However, 
once the result for every node is saved (a single double precisi-
on number) we can reuse the calculated result which significantly 
speeds up the calculations, as by this the complexity of the algo-
rithm becomes proportional to the number of nodes in the BDD. 
Effectively, for the most complex model we achieved the worst 
case complexity of order  double precision operations. The n	 in 
the complexity order represents the number of nodes from the 
BDD. The above written indicates an outstanding compact BDD 
representation (column Ratio	MCS/BDD) of the MCS set and a 
remarkably efficient implementation of the analysis algorithm. The 
respective column indicates the average quantity of paths going 
through a BDD node.

Recently [9], besides the BDD representation compactness 
the results of the quantitative analysis performed on BDDs were 
thoroughly compared to the results obtained with conventional 
FTA tools. The authors compared the results obtained by means 
of these two techniques (conventional and BDD) on the Liebstatdt 
NPP model (KKL) and found some interesting outcomes. For ex-
ample, they established that a “substantial	reduction	in	CDF/FDF	
was	achieved	for	KKL	PSA	model” signifying that the application 
of the BDD approach may have potential on the reduction of risk 
metrics in other models, too. It is worthwhile mentioning that the 
BDD quantitative analysis approach results in exact values, there-
by not having any biases commonly occurring with conventional 
approaches. 

IV. Conclusion
The preparation of the basic event ordering for the application 

of BDD methods makes the most important task of the analysis 
based on the BDD structure. The ordering procedure alone is the 
principal time consuming task; luckily it is performed only once 
and does not have to be repeated for other calculations. Along with 
the ordering, the MCS set is also computed once and needs not to 
be repeated unless the structure of the FT model has been changed. 
The exceptional compactness of minimal cut set recordings gained 
by the BDDs technique ensures the recording of a complete set of 
MCSs. The complete MCS set is defined by a logical function on 
indicator variables defined from the FT model. Once the complete 
MCS set has been found, the analysis is repeatedly performed by 
changing the conditions. For example, changing the probability of 
a basic event occurrence or   defining different selection predicates 
enables a repeated analysis without MCS set re-determination.

The most distinguished advantage of the BDD based FTA is 
its compact representation and the fact that the qualitative and qu-
antitative analysis can be performed on complete MCS sets. Actu-
ally, the numerical precision of the calculations does not depend on 
the number of cut sets in the MCS set entirely unlike conventional 
FTA approaches that must re-compute a part of the MCS set and 
perform analysis thereon.

Another important feature of BDD based algorithms is that the-
ir complexity is proportional to the number of BDD nodes and by 
this, they do not depend on the number of cut sets in the complete 
MCS set. Thus, not only do BDDs show (under the condition of 
an appropriate variable order) an acceptable time complexity for 
the implementation of algorithms for determining and analysing 
MCSs but also enable a compact recording of complete or partial 
sets of MCSs singled out in that way. Along with this, the compact 
BDD representation allows the development of new and improved 
analysis techniques since a complete MCS set is available for the 
implementation of such algorithms. This circumstance opens new 
prospects for further research and development of BDD analysis 
methods, especially in the field of nuclear energetics which utilizes 
the most complex FT models. 
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