
12

Journal
of Energy

journal homepage: http://journalofenergy.com/

VOLUME 71 Number 4 | 2022

Reni Banov, Zdenko Šimić, On Minimal Cut Sets Representation with Binary Decision Diagrams, Journal of Energy, vol. 71 Number 4 (2022), 12–15
https://doi.org/10.37798/2022714420

On Minimal Cut Sets Representation with Binary
Decision Diagrams

Reni Banov, Zdenko Šimić

Summary — Since their introduction in form of a canonical repre-
sentation of logical functions, the Binary Decision Diagrams (BDDs)
gained a wide acceptance in numerous industrial applications. This
paper summarizes the properties of BDD representation of Minimal
Cut Sets (MCS) of Fault Tree (FT) models most typically encounte-
red in nuclear energetics. Cut sets from MCS are defined as paths
from the top BDD node to terminal nodes in the BDD, on which a
quantitative and qualitative FT analysis (FTA) is performed. The core
of the FTA on the BDDs is performed with help of two fundamental
algorithms, one for conditional probability evaluation and another
for the selection of cut sets. The accuracy of conditional probability
evaluation represents an essential feature for an unbiased quantitati-
ve analysis, such as the top event probability or the determination of
event importance measures. The cut set selection algorithm is shown
in a generic version introducing logical predicates for its selection cri-
teria. As it is known, the efficiency of depicted algorithms depends
only on the number of BDD nodes used for the FT representation. In
order to appraise the compactness of the BDD representation of FT
models, their characteristics have herein been evaluated on several
real-life models from the Nuclear Power Plant Krško. The extraordi-
nariness of the compactness of the BDD representation reflects in its
ability to implement advanced dynamic analysis (i.e. what-if) of FT
models. The efficiency of such an approach is recognized by commer-
cial vendors upgrading their FT Tools to new versions by implemen-
ting BDD based algorithms.

Keywords — Probabilistic Safety Assessment (PSA), Fault Tree
Analysis (FTA), Binary Decision Diagrams (BDD), Minimal Cut Sets
(MCS)

I. Introduction

Introduced in the early 60’s as a tool for analysing failure con-
ditions of military systems [1], the Fault Tree Analysis (FTA)
has become one of the most popular methods to deductively

analyse undesired behaviour of complex engineering systems from
various industries. The static Fault Tree (FT) is a directed acyclic
graph (DAG) with a single top node representing a failure event
under analysis. Terminal nodes at the bottom of the FT are basic
events representing a component failure occurrence and are consi-
dered relevant for the analysis. The intermediate nodes are conditi-

ons under which the basic events propagate their occurrence to the
top node. An example of a simple FT is given in Figure 1. In a ge-
neral view to FTA, we differentiate two types of static analysis: the
qualitative and the quantitative [2]. Under the qualitative analysis
the FT is typically evaluated to find minimal cut sets, minimal
path sets, and common cause failures. Quantitative analyses are
performed numerically with the goal of computing various reliabi-
lity measures, like system availability, mean time between failures,
component importance measures, and others.

Fig. 1. Fault Tree example

It should be brought to attention that the FT structure represents
a large Boolean function which depends on the occurrence of basic
events, thereby allowing their minimization to find representation
in form of minimal cut sets (MCSs). The conventional approach to
FTA relies on a process of determination of minimal cuts sets from
the FT structure by applying a simplification rule according to the
Boolean laws. The two most common conventional approaches
are based on top-down or bottom-up rewritings of logical formulas
defined by intermediate FT nodes. Both approaches are computa-
tionally intensive and are resource demanding, and may, thereby,
be applied only to determine the most significant minimal cuts ba-
sed on probability values or their size. Lately, the new techniques
are constructed on Binary Decision Diagrams (BDDs) [3, 4] and
Monte Carlo [5] simulation methods. The BDD method of mini-
mization of Boolean functions seems to be more powerful than
Monte Carlo methods, though it depends on the knowledge of a
good basic event order to achieve supremacy [6]. The advantage of

(Corresponding author: Reni Banov)
 Reni Banov is with the University of Applied Sciences (TVZ)
Zagreb, Croatia (e-mail: reni.banov@tvz.hr)
 Zdenko Šimić is with the Energy Institute Hrvoje Požar (EIHP)
Zagreb, Croatia (e-mail: zsimic@eihp.hr)

129-2

numerically with the goal of computing various reliability measures, like system availability, mean
time between failures, component importance measures, and others.

Figure 1: Fault Tree example

It should be brought to attention that the FT structure represents a large Boolean function which
depends on the occurrence of basic events, thereby allowing their minimization to find representation
in form of minimal cut sets (MCSs). The conventional approach to FTA relies on a process of
determination of minimal cuts sets from the FT structure by applying a simplification rule according
to the Boolean laws. The two most common conventional approaches are based on top-down or
bottom-up rewritings of logical formulas defined by intermediate FT nodes. Both approaches are
computationally intensive and are resource demanding, and may, thereby, be applied only to
determine the most significant minimal cuts based on probability values or their size. Lately, the new
techniques are constructed on Binary Decision Diagrams (BDDs) [3, 4] and Monte Carlo [5]
simulation methods. The BDD method of minimization of Boolean functions seems to be more
powerful than Monte Carlo methods, though it depends on the knowledge of a good basic event order
to achieve supremacy [6]. The advantage of Monte Carlo simulation methods is that they can be easily
applied to the dynamic fault tree (DFT) analysis.

However, finding the minimal form of any Boolean function is a NP-complete problem, even
for the simplest case of monotonic Boolean functions. The time and space complexity of a problem
requires a novel data structure to represent Boolean functions. Normally, Boolean functions are
represented by truth tables or logical expressions, but the BDD structure, i.e., a variant of DAG with
two terminal vertices, are far more efficient for implementation. The BDDs for Boolean functions are
derived from the Shannon identity

𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∧ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 1𝑖𝑖𝑖𝑖)� ∨ �¬𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∧ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 0𝑖𝑖𝑖𝑖)� (1)

applied recursively to each function in expansion. Each Shannon step generates a part of a full binary
tree with vertices structured, as shown in Figure 2, down to the bottom of the tree with two terminal
vertices representing Boolean values {0,1}.

13

Monte Carlo simulation methods is that they can be easily applied
to the dynamic fault tree (DFT) analysis.

However, finding the minimal form of any Boolean function is
a NP-complete problem, even for the simplest case of monotonic
Boolean functions. The time and space complexity of a problem
requires a novel data structure to represent Boolean functions. Nor-
mally, Boolean functions are represented by truth tables or logical
expressions, but the BDD structure, i.e., a variant of DAG with
two terminal vertices, are far more efficient for implementation.
The BDDs for Boolean functions are derived from the Shannon
identity

 (1)

applied recursively to each function in expansion. Each Shannon
step generates a part of a full binary tree with vertices structured, as
shown in Figure 2, down to the bottom of the tree with two termi-
nal vertices representing Boolean values {0,1}.

Fig. 2. Shannon identity step as binary tree

The Shannon identity with BDDs is commonly expressed by
means of the If-Then-Else (ite) construction, for instance, the tree
structure of the function from Figure 2 is written as

(2)

If an order of variables is the same (preserved) on each path
from any vertices down to terminal vertices, the BDD is denoted
as ordered BDD [7]. During the Shannon expansion the vertices
for each unique Boolean function are generated only once, thereby
making an ordered BDD reduced and ensuring the uniqueness of
representation, i.e., the canonical representation of the Boolean
function. The BDD structure allows an efficient implementation of
usual logical operations, which makes it a suitable tool for manipu-
lating Boolean functions.

II. BDD Method for MCS Set
From the very beginning of the application of fault tree

analysis in nuclear energetics it has clearly come to mind, that a
more accurate insight into the reliability of the observed system
relies on the understanding of the complete or, at least, the most
significant parts of failure sets (minimal cut sets MCSs). Howe-
ver, the determination of MCSs turns out complex even with very
simple systems modelled by a coherent fault tree, dealing with at
least two hard problems. The first, being the time complexity of
algorithms employed for the determination of the complete or par-
tial set of MCSs, while the second relates to a space complexity of

the same sets recording. More recently binary decision diagrams
(BDDs) have been developed, enabling an indirect recording of fa-
ult trees by applying indicator variables for the component failure
state within the system.

The basic idea behind the BDD method is to define an indicator
variable which acquires the logical value zero (false) if the basic
event does not occur, and inversely, the logical value one (true) if
the basic event occurred. The probability of the basic event occu-
rrence is thereby associated with the probability of true occurrence
of the indicator variable. In this way the Bernoulli random varia-
ble is assigned to the basic event. Once the logical function repre-
sented by the FT is converted to a BDD representation, the BDD
based method [3] can be used to find its minimal disjunctive form
which represents a MCS set of the coherent FT. Figure 3 shows the
BDD representation of the complete MCS set of the FT example
from Figure 1. The dotted arrow line marks that the MCS does not
include the event originating from the line, while the full arrow line
stands for the event included in MCS. The full MCS set is defined
by all paths from the top node ending at the node with value one
(true). It is worthwhile mentioning that non-coherent FTs can be
treated similarly with Zero Decision Diagrams (ZDDs) which are
a variant of BDD supporting combinatorial sets [8].

Fig. 3. MCS as BDD tree

Once the BDD of the MCS set is created, an analysis can be
performed on indicator variables with algorithms specifically
written for the BDD structure. The qualitative analysis relies on
the selection of MCS sets according to specific criteria. This kind
of analysis is easily performed based on the algorithm which can
select a subset of MCSs from BDD with predicates applied to the
indicator variables. The underneath algorithm (Figure 4) imple-
ments a subset selection from the full MCS set represented by the
BDD structure defined on indirect variables.

The essence of the algorithm is to select from a full MCS set
only cut sets for which the predicate results in true value on indirect
variables. With a new minimal cut set the decision is rather simple,
namely, as soon as the terminal node with value one is reached,
the predicate on truth values of indirect variables traversed through
the path can be applied. This part of the algorithm is entailed in
lines 9-14. Not having reached the terminal node means that we
still dwell on a node determined by a single indirect variable (a
single basic event). Subsequently, we can pursue the traversal of

129-2

numerically with the goal of computing various reliability measures, like system availability, mean
time between failures, component importance measures, and others.

Figure 1: Fault Tree example

It should be brought to attention that the FT structure represents a large Boolean function which
depends on the occurrence of basic events, thereby allowing their minimization to find representation
in form of minimal cut sets (MCSs). The conventional approach to FTA relies on a process of
determination of minimal cuts sets from the FT structure by applying a simplification rule according
to the Boolean laws. The two most common conventional approaches are based on top-down or
bottom-up rewritings of logical formulas defined by intermediate FT nodes. Both approaches are
computationally intensive and are resource demanding, and may, thereby, be applied only to
determine the most significant minimal cuts based on probability values or their size. Lately, the new
techniques are constructed on Binary Decision Diagrams (BDDs) [3, 4] and Monte Carlo [5]
simulation methods. The BDD method of minimization of Boolean functions seems to be more
powerful than Monte Carlo methods, though it depends on the knowledge of a good basic event order
to achieve supremacy [6]. The advantage of Monte Carlo simulation methods is that they can be easily
applied to the dynamic fault tree (DFT) analysis.

However, finding the minimal form of any Boolean function is a NP-complete problem, even
for the simplest case of monotonic Boolean functions. The time and space complexity of a problem
requires a novel data structure to represent Boolean functions. Normally, Boolean functions are
represented by truth tables or logical expressions, but the BDD structure, i.e., a variant of DAG with
two terminal vertices, are far more efficient for implementation. The BDDs for Boolean functions are
derived from the Shannon identity

𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) = �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∧ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 1𝑖𝑖𝑖𝑖)� ∨ �¬𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ∧ 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 0𝑖𝑖𝑖𝑖)� (1)

applied recursively to each function in expansion. Each Shannon step generates a part of a full binary
tree with vertices structured, as shown in Figure 2, down to the bottom of the tree with two terminal
vertices representing Boolean values {0,1}.

129-3

Figure 2: Shannon identity step as binary tree

The Shannon identity with BDDs is commonly expressed by means of the If-Then-Else (ite)
construction, for instance, the tree structure of the function 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) from Figure 2 is written as

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 1𝑖𝑖𝑖𝑖),𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 0𝑖𝑖𝑖𝑖)) (2)

If an order of variables is the same (preserved) on each path from any vertices down to terminal
vertices, the BDD is denoted as ordered BDD [7]. During the Shannon expansion the vertices for
each unique Boolean function are generated only once, thereby making an ordered BDD reduced and
ensuring the uniqueness of representation, i.e., the canonical representation of the Boolean function.
The BDD structure allows an efficient implementation of usual logical operations, which makes it a
suitable tool for manipulating Boolean functions.

2 BDD METHOD FOR MCS SET

From the very beginning of the application of fault tree analysis in nuclear energetics it has
clearly come to mind, that a more accurate insight into the reliability of the observed system relies on
the understanding of the complete or, at least, the most significant parts of failure sets (minimal cut
sets MCSs). However, the determination of MCSs turns out complex even with very simple systems
modelled by a coherent fault tree, dealing with at least two hard problems. The first, being the time
complexity of algorithms employed for the determination of the complete or partial set of MCSs,
while the second relates to a space complexity of the same sets recording. More recently binary
decision diagrams (BDDs) have been developed, enabling an indirect recording of fault trees by
applying indicator variables for the component failure state within the system.

The basic idea behind the BDD method is to define an indicator variable which acquires the
logical value zero (false) if the basic event does not occur, and inversely, the logical value one (true)
if the basic event occurred. The probability of the basic event occurrence is thereby associated with
the probability of true occurrence of the indicator variable. In this way the Bernoulli random variable
is assigned to the basic event. Once the logical function represented by the FT is converted to a BDD
representation, the BDD based method [3] can be used to find its minimal disjunctive form which
represents a MCS set of the coherent FT. Figure 3 shows the BDD representation of the complete
MCS set of the FT example from Figure 1. The dotted arrow line marks that the MCS does not include
the event originating from the line, while the full arrow line stands for the event included in MCS.
The full MCS set is defined by all paths from the top node ending at the node with value one (true).
It is worthwhile mentioning that non-coherent FTs can be treated similarly with Zero Decision
Diagrams (ZDDs) which are a variant of BDD supporting combinatorial sets [8].

129-3

Figure 2: Shannon identity step as binary tree

The Shannon identity with BDDs is commonly expressed by means of the If-Then-Else (ite)
construction, for instance, the tree structure of the function 𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙) from Figure 2 is written as

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 1𝑖𝑖𝑖𝑖),𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙; 0𝑖𝑖𝑖𝑖)) (2)

If an order of variables is the same (preserved) on each path from any vertices down to terminal
vertices, the BDD is denoted as ordered BDD [7]. During the Shannon expansion the vertices for
each unique Boolean function are generated only once, thereby making an ordered BDD reduced and
ensuring the uniqueness of representation, i.e., the canonical representation of the Boolean function.
The BDD structure allows an efficient implementation of usual logical operations, which makes it a
suitable tool for manipulating Boolean functions.

2 BDD METHOD FOR MCS SET

From the very beginning of the application of fault tree analysis in nuclear energetics it has
clearly come to mind, that a more accurate insight into the reliability of the observed system relies on
the understanding of the complete or, at least, the most significant parts of failure sets (minimal cut
sets MCSs). However, the determination of MCSs turns out complex even with very simple systems
modelled by a coherent fault tree, dealing with at least two hard problems. The first, being the time
complexity of algorithms employed for the determination of the complete or partial set of MCSs,
while the second relates to a space complexity of the same sets recording. More recently binary
decision diagrams (BDDs) have been developed, enabling an indirect recording of fault trees by
applying indicator variables for the component failure state within the system.

The basic idea behind the BDD method is to define an indicator variable which acquires the
logical value zero (false) if the basic event does not occur, and inversely, the logical value one (true)
if the basic event occurred. The probability of the basic event occurrence is thereby associated with
the probability of true occurrence of the indicator variable. In this way the Bernoulli random variable
is assigned to the basic event. Once the logical function represented by the FT is converted to a BDD
representation, the BDD based method [3] can be used to find its minimal disjunctive form which
represents a MCS set of the coherent FT. Figure 3 shows the BDD representation of the complete
MCS set of the FT example from Figure 1. The dotted arrow line marks that the MCS does not include
the event originating from the line, while the full arrow line stands for the event included in MCS.
The full MCS set is defined by all paths from the top node ending at the node with value one (true).
It is worthwhile mentioning that non-coherent FTs can be treated similarly with Zero Decision
Diagrams (ZDDs) which are a variant of BDD supporting combinatorial sets [8].

129-4

Figure 3: MCS as BDD tree

Once the BDD of the MCS set is created, an analysis can be performed on indicator variables

with algorithms specifically written for the BDD structure. The qualitative analysis relies on the
selection of MCS sets according to specific criteria. This kind of analysis is easily performed based
on the algorithm which can select a subset of MCSs from BDD with predicates applied to the indicator
variables. The underneath algorithm (Figure 4) implements a subset selection from the full MCS set
represented by the BDD structure defined on indirect variables.

The essence of the algorithm is to select from a full MCS set only cut sets for which the
predicate results in true value on indirect variables. With a new minimal cut set the decision is rather
simple, namely, as soon as the terminal node with value one is reached, the predicate on truth values
of indirect variables traversed through the path can be applied. This part of the algorithm is entailed
in lines 9-14. Not having reached the terminal node means that we still dwell on a node determined
by a single indirect variable (a single basic event). Subsequently, we can pursue the traversal of the
BDD graph via the branch containing that variable (full arrow line), assuming that the predicate
responded in value one (true) for the part of the cut set found. Contrary to that, on a zero (false)
responded value the traversal is carried on with the branch not containing that variable (dotted arrow
line). This part of the algorithm from Figure 4 is displayed in lines 16-20. The lines 6-8 from the
algorithm represent paths leading to the zero terminal node, i.e., to the node indicating that the
minimal cut set has not been found through the path. It is important to mention that the predicate for
the cut set selection must return a logical value even if only a part of the minimal cut set stands. For
example, predicates conforming to that criteria are typical predicates used for the analysis, such as a
maximal number of basic events in a cut set or a minimal cut set probability value.

The cut set probability evaluation is performed with the assumption that basic events are
independent, in other words, the probability value of a cut set equals to the product of probabilities
of basic events contained in the cut set. Basically, by introducing line 17 in the algorithm a significant
reduction of the traversal has been performed resulting in a reduction of the execution time for the
minimal cut set selection. What is more, by introducing the concept of predicates for the cut set
selection we have achieved a flexibility for the creation of complex selection criteria since logical
expressions defined by predicates can be combined with common logical operators. For example, it
is rather easy to specify criteria containing cut sets which bear a specific number of basic events and
meet either conditions of a minimal probability value or conditions containing a specific basic event.

Reni Banov, Zdenko Šimić, On Minimal Cut Sets Representation with Binary Decision Diagrams, Journal of Energy, vol. 71 Number 4 (2022), 12–15
https://doi.org/10.37798/2022714420

14

the BDD graph via the branch containing that variable (full arrow
line), assuming that the predicate responded in value one (true) for
the part of the cut set found. Contrary to that, on a zero (false)
responded value the traversal is carried on with the branch not con-
taining that variable (dotted arrow line). This part of the algorithm
from Figure 4 is displayed in lines 16-20. The lines 6-8 from the
algorithm represent paths leading to the zero terminal node, i.e.,
to the node indicating that the minimal cut set has not been found
through the path. It is important to mention that the predicate for
the cut set selection must return a logical value even if only a part
of the minimal cut set stands. For example, predicates conforming
to that criteria are typical predicates used for the analysis, such as
a maximal number of basic events in a cut set or a minimal cut set
probability value.

The cut set probability evaluation is performed with the
assumption that basic events are independent, in other words, the
probability value of a cut set equals to the product of probabilities
of basic events contained in the cut set. Basically, by introducing
line 17 in the algorithm a significant reduction of the traversal has
been performed resulting in a reduction of the execution time for
the minimal cut set selection. What is more, by introducing the
concept of predicates for the cut set selection we have achieved
a flexibility for the creation of complex selection criteria since
logical expressions defined by predicates can be combined with
common logical operators. For example, it is rather easy to specify
criteria containing cut sets which bear a specific number of basic
events and meet either conditions of a minimal probability value or
conditions containing a specific basic event. In this way we have
achieved a significant flexibility to perform a highly specific quali-
tative and quantitative FT analysis.

Fig. 4. MCS subset selection

The second basic algorithm (Figure 5) represents the calcu-
lation procedure of the conditional probability from the paths in
the BDD graph. Analogously to the previous algorithm the BDD
structure is traversed in a depth first manner and conditional pro-
babilities are calculated from indicator variables encountered on
the traversal path. Whenever we reach terminal nodes we need to
return the probability value confirmed by the truth value of ter-
minal nodes, thus, for terminal node one the value 1.0 is returned,
while for terminal node zero the value 0.0 is returned. This part of
the algorithm is set forth in lines 5-10. Once an intermediate node
is reached, by checking the truth value of the indicator variable
from the parameter set (σ), we may decide on the continuance of
the BDD traversal. Thus in lines 14-16 the traversal is continued in
case of a zero (false) value indicator variable, i.e., in this case we

are calculating the conditional probability provided that the basic
event associated with the indicator variable did not occur. Similarly
to that, in lines 17-19 the conditional probability is calculated assu-
ming that the particular basic event has occurred. In all other cases
we continue with a recursive calculation of the conditional proba-
bility by traversing the BDD structure on left and right branch no-
des (line 22). It is essential to mention that the significant algorithm
optimisation may be achieved by saving the intermediate result of
the conditional probability calculation for that node. In this way a
multiple calculation of conditional probabilities for the same nodes
encountered during the traversal is avoided, which at the end, re-
sults in time efficient computation.

Fig.5. Indirect evaluation of conditional probability from BDD

Now, a qualitative and quantitative analysis on a fault tree mo-
del may be carried out with BDDs by applying known algorithms
for the determination of a minimal disjunctive normal form of the
logical function presented by the coherent fault tree, which repre-
sents the logical recording of a set of minimal cuts.

III. Results and Discussion
The previous algorithms are implemented in the C/C++ pro-

gramming language and their correctness and accuracy has been
tested on FT models from the nuclear power plant Krško. For the
implementation of the BDD algorithm it was necessary to find a
good basic event order by which the BDD representation of the
FT may be traced. The following table brings characteristics of FT
models (column B.E. stands for the number of basic events, co-
lumn Gates is the number of intermediate events) utilized in the
testing as well as properties of the BDD representation of their
complete MCS set.

Table 1
Results on NEK FT test models

FT B.E. Gates BDD MCS Ratio MCS/BDD

acp 409 674 4.583 228.242.636 49.802

chrgr 438 695 68.904 14.840.731.139.897 215.382.722

dcp 447 706 77.595 152.148.878.846.392 1.960.807.769

efw 692 957 265.401 1.769.960.840.506.752 6.669.005.921

hpsi 674 940 22.902 371.554.422.700 16.223.667

lpsi 525 760 26.754 479.582.239.771 17.925.627

sw 444 720 140.486 58.952.275.075.664 419.630.960

cored1 1319 1279 1.951.673 69.273.024.997.243.046 35.494.176.020

cored2 1377 1633 16.524.072 2.436.058.751.633.933.343 147.424.844.895

129-5

In this way we have achieved a significant flexibility to perform a highly specific qualitative and
quantitative FT analysis.

Figure 4: MCS subset selection

The second basic algorithm (Figure 5) represents the calculation procedure of the conditional

probability from the paths in the BDD graph. Analogously to the previous algorithm the BDD
structure is traversed in a depth first manner and conditional probabilities are calculated from
indicator variables encountered on the traversal path. Whenever we reach terminal nodes we need to
return the probability value confirmed by the truth value of terminal nodes, thus, for terminal node
one the value 1.0 is returned, while for terminal node zero the value 0.0 is returned. This part of the
algorithm is set forth in lines 5-10. Once an intermediate node is reached, by checking the truth value
of the indicator variable from the parameter set (𝜎𝜎𝜎𝜎), we may decide on the continuance of the BDD
traversal. Thus in lines 14-16 the traversal is continued in case of a zero (false) value indicator
variable, i.e., in this case we are calculating the conditional probability provided that the basic event
associated with the indicator variable did not occur. Similarly to that, in lines 17-19 the conditional
probability is calculated assuming that the particular basic event has occurred. In all other cases we
continue with a recursive calculation of the conditional probability by traversing the BDD structure
on left and right branch nodes (line 22). It is essential to mention that the significant algorithm
optimisation may be achieved by saving the intermediate result of the conditional probability
calculation for that node. In this way a multiple calculation of conditional probabilities for the same
nodes encountered during the traversal is avoided, which at the end, results in time efficient
computation.

129-6

Figure 5: Indirect evaluation of conditional probability from BDD

Now, a qualitative and quantitative analysis on a fault tree model may be carried out with BDDs
by applying known algorithms for the determination of a minimal disjunctive normal form of the
logical function presented by the coherent fault tree, which represents the logical recording of a set
of minimal cuts.

3 RESULTS AND DISCUSSION

The previous algorithms are implemented in the C/C++ programming language and their
correctness and accuracy has been tested on FT models from the nuclear power plant Krško. For the
implementation of the BDD algorithm it was necessary to find a good basic event order by which the
BDD representation of the FT may be traced. The following table brings characteristics of FT models
(column B.E. stands for the number of basic events, column Gates is the number of intermediate
events) utilized in the testing as well as properties of the BDD representation of their complete MCS
set.

Table 1: Results on NEK FT test models

FT B.E. Gates BDD MCS Ratio MCS/BDD
acp 409 674 4.583 228.242.636 49.802

chrgr 438 695 68.904 14.840.731.139.897 215.382.722
dcp 447 706 77.595 152.148.878.846.392 1.960.807.769
efw 692 957 265.401 1.769.960.840.506.752 6.669.005.921
hpsi 674 940 22.902 371.554.422.700 16.223.667
lpsi 525 760 26.754 479.582.239.771 17.925.627
sw 444 720 140.486 58.952.275.075.664 419.630.960

cored1 1319 1279 1.951.673 69.273.024.997.243.046 35.494.176.020
cored2 1377 1633 16.524.072 2.436.058.751.633.933.343 147.424.844.895

Reni Banov, Zdenko Šimić, On Minimal Cut Sets Representation with Binary Decision Diagrams, Journal of Energy, vol. 71 Number 4 (2022), 12–15
https://doi.org/10.37798/2022714420

15

The number of cut sets in MCS set (column MCS) for the te-
sted FT models ranges between 108 and 1018 , while the BDD size
(column BDD) for the most complex model (cored2) comes to 16.5
million nodes. Since the nodes are represented with a structure of
32 bytes sized we can conclude that the full MCS set for the most
complex model shall need approx. 500MB RAM memory. It is
hard to conceive how much memory it would take for conven-
tional FTA programmes to represent a complete MCS set of the
cored2 model.

Apart from the compact representation, the BDD structure
allows an efficient execution of the mentioned algorithms; e.g., the
selection of the MCS subset according to predicate criteria for a
cut set length equalling to 5 basic events lasts for approx. 2 seconds
on a desktop PC with 8GB RAM and an Intel i5 processor. The
execution time of the algorithm is predominantly influenced by the
selection of the traversal branch which does not meet the predica-
ted condition, i.e., on the branch with a basic event for which the
predicate returns a false value in the early traversal phase (see line
16 of algorithm in Figure 4).

Also, the top event conditional probability calculation by me-
ans of the algorithm from Figure 5 takes on an average less than
one second even for the probability of a top event without any
condition on indicator variables. This is the most complex case,
since BDD traversals are performed through each node. However,
once the result for every node is saved (a single double precisi-
on number) we can reuse the calculated result which significantly
speeds up the calculations, as by this the complexity of the algo-
rithm becomes proportional to the number of nodes in the BDD.
Effectively, for the most complex model we achieved the worst
case complexity of order double precision operations. The n	 in
the complexity order represents the number of nodes from the
BDD. The above written indicates an outstanding compact BDD
representation (column Ratio	MCS/BDD) of the MCS set and a
remarkably efficient implementation of the analysis algorithm. The
respective column indicates the average quantity of paths going
through a BDD node.

Recently [9], besides the BDD representation compactness
the results of the quantitative analysis performed on BDDs were
thoroughly compared to the results obtained with conventional
FTA tools. The authors compared the results obtained by means
of these two techniques (conventional and BDD) on the Liebstatdt
NPP model (KKL) and found some interesting outcomes. For ex-
ample, they established that a “substantial	reduction	in	CDF/FDF	
was	achieved	for	KKL	PSA	model” signifying that the application
of the BDD approach may have potential on the reduction of risk
metrics in other models, too. It is worthwhile mentioning that the
BDD quantitative analysis approach results in exact values, there-
by not having any biases commonly occurring with conventional
approaches.

IV. Conclusion
The preparation of the basic event ordering for the application

of BDD methods makes the most important task of the analysis
based on the BDD structure. The ordering procedure alone is the
principal time consuming task; luckily it is performed only once
and does not have to be repeated for other calculations. Along with
the ordering, the MCS set is also computed once and needs not to
be repeated unless the structure of the FT model has been changed.
The exceptional compactness of minimal cut set recordings gained
by the BDDs technique ensures the recording of a complete set of
MCSs. The complete MCS set is defined by a logical function on
indicator variables defined from the FT model. Once the complete
MCS set has been found, the analysis is repeatedly performed by
changing the conditions. For example, changing the probability of
a basic event occurrence or defining different selection predicates
enables a repeated analysis without MCS set re-determination.

The most distinguished advantage of the BDD based FTA is
its compact representation and the fact that the qualitative and qu-
antitative analysis can be performed on complete MCS sets. Actu-
ally, the numerical precision of the calculations does not depend on
the number of cut sets in the MCS set entirely unlike conventional
FTA approaches that must re-compute a part of the MCS set and
perform analysis thereon.

Another important feature of BDD based algorithms is that the-
ir complexity is proportional to the number of BDD nodes and by
this, they do not depend on the number of cut sets in the complete
MCS set. Thus, not only do BDDs show (under the condition of
an appropriate variable order) an acceptable time complexity for
the implementation of algorithms for determining and analysing
MCSs but also enable a compact recording of complete or partial
sets of MCSs singled out in that way. Along with this, the compact
BDD representation allows the development of new and improved
analysis techniques since a complete MCS set is available for the
implementation of such algorithms. This circumstance opens new
prospects for further research and development of BDD analysis
methods, especially in the field of nuclear energetics which utilizes
the most complex FT models.

References
[1] C.A. Ericson, “Fault Tree Analysis – a history”, In	Proceedings	of	the	17th	In-

ternational	System	Safety	Conference, Orlando, Florida, USA, 16-21 August
1999, pp. 1 – 9

[2] E.J.J. Ruijters, M.I.A. Stoelinga, “Fault Tree Analysis: A survey of the state-
of-the-art in modeling, analysis and tools”, CTIT TR-CTIT-14-14, Centre for
Telematics and Information Technology, University of Twente, NL., 2014.

[3] A.B. Rauzy, “New algorithms for fault tree analysis”, Reliability	Engineer-
ing	&	System	Safety, Vol. 40, No. 3, pp. 203–211, 1993.

[4] R. Remenyte-Prescott, J.D. Andrews, “An enhanced component connection
method for conversion of fault trees to binary decision diagrams”, Reliability	
Engineering	&	System	Safety, Vol. 93, No. 10, pp. 1543–1550, 2008.

[5] K. Durga Rao, V. Gopika, V.V.S. Sanyasi Rao, H.S. Kushwaha, A.K. Verma,
A. Srividya, “Dynamic fault tree analysis using Monte Carlo simulation in
probabilistic safety assessment”, Reliability	Engineering	&	System	Safety,
Vol. 94, No. 4, pp. 872–883, 2009.

[6] R. Banov, Z. Šimić, D. Grgić, “A new heuristics for the event ordering in
binary decision diagram applied in fault tree analysis”, Proceedings	of	the	
Institution	of	Mechanical	Engineers,	Part	O:	Journal	of	Risk	and	Reliability,
Vol. 234, No. 2, pp. 397–406, 2020.

[7] R.E. Bryant, “Graph-Based Algorithms for Boolean Function Manipula-
tion”, IEEE	Transaction	on	Computers, Vol. 38, No. 8, pp. 677–691, 1986

[8] O. Coudert, J.C. Madre, “Metaprime: An interactive fault-tree analyzer”,
IEEE	Transaction	on	Reliability, Vol. 43, No. 1, pp. 121–127, 1994

[9] P. Zvoncek, O.Nusbaumer, “Comparison of MCUB and MCS BDD Fault
Tree Solution Algorithms using Liebstadt Nuclear Power Plant Model”,
PSAM	14, Los Angeles, CA, USA, 16-21 September 2018

Reni Banov, Zdenko Šimić, On Minimal Cut Sets Representation with Binary Decision Diagrams, Journal of Energy, vol. 71 Number 4 (2022), 12–15
https://doi.org/10.37798/2022714420

