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Summary — Failures of large power transformers in transmission 
system are always followed by significant costs, which is especially 
problematic given that they present an unplanned expenditure. In ad-
dition from disrupting financial plans, these events can lead to lower 
system reliability. This paper describes the development and poten-
tial application of transformer winding temperature model based 
on multilayer perceptron class of artificial neural networks. Model 
is built in Python programming language with data collected over 
the span of one year for a single transformer. Three input features 
(oil temperature, winding current and outside temperature) are used 
in the input layer, aiming to predict the winding temperature in the 
transformer. By comparing the predicted winding temperature with 
the actual measured winding temperature, insights into the trans-
formers internal condition can be derived. To demonstrate the models 
proposed application, two types of transformer condition degrada-
tion are simulated and a set of certain indicators based on statistical 
measures are explored. 

Keywords — transformers, artificial neural networks, condition 
monitoring

I. Introduction

TRANSFORMERS are exceptionally crucial components 
of the transmission network. Their uninterrupted operation 
(aside from planned maintenance) is vital for stability and 

reliability of electric power system (EPS). Failures not only have 
the potential to interrupt the customer supply and damage to other 
assets, but under certain circumstances can lead to ripple effect 
that impacts EPS across various countries or regions. Repercussi-
ons of these events, when quantified, are always associated with 
high material costs. However, they can also result in indirect loss 
of life and reputational damage which can’t be easily quantified, 
but nonetheless carry immense significance [1-4]. Given the risks, 
transmission operators have the responsibility of ensuring the con-
tinuous operation of transformers. Therefore, any novel and pro-
mising approaches like vibro-acoustic diagnostics [5] and machine 
learning applications [6] that could further this goal warrant a tho-
rough examination. 

The model is based on multilayer perceptron (MLP), a funda-
mental class of artificial neural networks (ANN). MLPs are widely 
used due to their flexibility and large number of evolutions that 
have evolved from them [7-9].

In this case, the MLP is characterized by three features in the 
input layer and a single label as the output layer. The model is used 
to predict the winding temperature based on winding current, oil 
temperature and outside temperature.

Oil temperature is used as an input given that the transformer 
oil acts as a heatsink with inherent inertia. This affects the dyna-
mics between changes in winding current and winding tempera-
ture, primarily because the efficiency of heat transfer between the 
transformer windings and the oil is directly proportional to their 
temperature difference. The same principle applies to the air tem-
perature outside the transformer and transformer oil. The intent is 
that these temperature ratios, which capture the systems cooling 
efficacy, are encapsulated within the architecture of the neural 
network.

 Predicted temperature is further compared with the measured 
temperature to ascertain the difference between them. Change in 
their discrepancy over time can serve as an indicator or set of in-
dicators for the transformers internal condition. This can be used 
to: identify an ongoing negative process inside the transformer 
which enables timely action to prevent a future failure, serve as a 
long-term condition monitoring indicator for age and degradation 
based replacement planning or track and analyze the severity and 
consequences of adverse effects resulting from various damaging 
events.

The input features used in the model are typical and often 
widely available in transmission operators. Data for this model was 
acquired from Croatian transmission system operators SCADA 
system and a meteorological station located in the same transfor-
mer station. Basic data pertaining to the transformer under study 
is presented in Table I, while the corresponding image is provided 
in Fig. 1. 

Table I

Basic Transformer Data

The data required  extensive processing and preparation before 
the model could be developed. This was done using Python pro-
gramming language with the help of scikit-learn [10-11] framework 
and various other libraries. Finally, various hyperparameters of 
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The data required  extensive processing and preparation 

before the model could be developed. This was done using 
Python programming language with the help of scikit-learn 
[10-11] framework and various other libraries. Finally, various 
hyperparameters of the model were optimized over multiple 
iterations to achieve the best possible results. As actual faults 
are infrequent and only newer transformers have available 
internal temperature data, examples where all input data is 
available during faults is scarce. For that reason, two types of 
faults are simulated to demonstrate models suggested 
application. 

 
Fig. 1. Image of the transformer from which the data was collected 
 

II. DATA PREPARATION 

A. Data preprocessing 
As winding temperature is a continuous variable, the 

problem of modelling falls under the category of regression 
problems. The data set has to be prepared in such a way where 
incomplete entries are removed. To achieve this, it is first 
necessary to synchronize all data points and prune the data set. 
Any missing timestamps must first be found and filled in for 
every input feature, which is then followed by trimming of 
certain features to a common sampling frequency. Finally, the 
features are time synchronized after which it is possible to 
remove entries with partially available data.  

Justification for removal of entries where data is not 
available for each feature lies in the fact that the ANN lacks a 
memory module. Every training pass of the ANN updates its 

weights, which means that all previous states are embedded in 
the numerical value of the updated weights. For that reason, 
there is no value in feeding fabricated data to the ANN as it 
only degrades the ANN performance with regards to real data. 
In fact, it can be argued that classical interpolation of the 
missing data falsely inflates the precision of the ANN if the 
interpolation is used on both training and testing sets, as it 
introduces bias. 

Winding current, oil temperature and winding temperature 
were all available in 15-minute sampling frequency at best, 
while the outside temperature data was available every 1-
minute. For this paper, one year of data for a single 
transformer was taken which after preprocessing resulted in 
512,683 individual data points for outside temperature and 
35,041 data points for each feature and target label. Because 
this amount of data would be very hard to process 
conventionally, custom algorithms were applied to the data set 
in order to expedite this stage of data preparation. 

There are two instances in the data set where the winding 
temperature sensor measures 0°C, coinciding with current 
values of 0 A. However, there are other instances in the dataset 
where current through the windings also reads 0 A, but the 
winding temperature remains unaffected. This suggests that the 
two data points in question are a result of a possibly systematic 
failure in the data collection, that simultaneously impacted 
both sensors. 

These data points were not excluded from the data set, as it 
can be valuable to study the behavior of the model during 
short-term sensor failure. The reduction in the error from the 
first iteration, even when the data from two sensors was faulty 
indicates that the model has enhanced robustness to outliers 
and is not overfitting. This is especially important as it 
indicates that the short-term sensor failures or data collection 
issues will not adversely affect the indicators, which are 
discussed further in the paper. 

B. Data processing 
This phase of data preparation refers to processing of the 

data for the ANN. It is conducted in the same Python script 
where the very MLP model is built, as the processing time is 
negligible in comparison to the training time of the model. The 
optimal range of input data for the ANN is between 0 and 1, 
which means that the data has to be normalized. The min-max 
scaling algorithm is applied on the data set to preserve the 
original relative distances between the data points, and sets the 
data in the preferred range for the ANN. Min-max scaling 
normalization is described by: 

 
minmax
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XXX
−
−

=  (1) 

where X’ is the scaled value, X is the value to be scaled, Xmin is 
the minimum value of the corresponding feature data set and 
Xmax is the maximum value of the corresponding feature data 
set. Finally, the script splits the data set into data for training, 
testing and validation. 
 

TABLE I 
BASIC TRANSFORMER DATA 

Rated Power 300 000/300 000/(100 000) kVA 

Rated Voltage 400 000/115 000/(10 470) V 

Rated Current 433.0/1 506.1/(5 514.3) A 

Frequency 50 Hz 

Connection Group YNaO(d5) 

Cooling Type OFAF 
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the model were optimized over multiple iterations to achieve the 
best possible results. As actual faults are infrequent and only newer 
transformers have available internal temperature data, examples 
where all input data is available during faults is scarce. For that 
reason, two types of faults are simulated to demonstrate models 
suggested application.
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perature sensor measures 0°C, coinciding with current values of 0 
A. However, there are other instances in the dataset where current 
through the windings also reads 0 A, but the winding temperature 
remains unaffected. This suggests that the two data points in que-
stion are a result of a possibly systematic failure in the data collec-
tion, that simultaneously impacted both sensors.

These data points were not excluded from the data set, as it can 
be valuable to study the behavior of the model during short-term 
sensor failure. The reduction in the error from the first iteration, 
even when the data from two sensors was faulty indicates that the 
model has enhanced robustness to outliers and is not overfitting. 
This is especially important as it indicates that the short-term sen-
sor failures or data collection issues will not adversely affect the 
indicators, which are discussed further in the paper.

B. Data processing
This phase of data preparation refers to processing of the data 

for the ANN. It is conducted in the same Python script where the 
very MLP model is built, as the processing time is negligible in 
comparison to the training time of the model. The optimal range 
of input data for the ANN is between 0 and 1, which means that 
the data has to be normalized. The min-max scaling algorithm is 
applied on the data set to preserve the original relative distances 
between the data points, and sets the data in the preferred range for 
the ANN. Min-max scaling normalization is described by:

minmax

min'
XX
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= (1)

where X’ is the scaled value, X is the value to be scaled, Xmin 
is the minimum value of the corresponding feature data set and 
Xmax is the maximum value of the corresponding feature data set. 
Finally, the script splits the data set into data for training, testing 
and validation.

III. Model Training and Optimization
MLP models are characterized by many hyperparameters 

(HPs) which can roughly be divided between: model HPs, opti-
mization algorithm HPs and backpropagation algorithm HPs. In 
order to validate the model accuracy, two common statistical me-
asures were employed, mean squared error (MSE) value of which 
should be minimized and determination coefficient (R2), which 
should be maximized.

A. First iteration
The initial iteration of the model with mostly default settings 

already gives promising results with MSE of 0.79 and R2 of 0.978. 
However, it doesn’t converge over 200 iterations and exhibits a 
peak error exceeding 50°C in a specific case where the temperature 
and current measurement sensors experience a malfunction. This 
suggests that the model is overfitting and robustness is low, as ano-
malous data causes significant errors.

 The default topological construction of this model consists only 
of input and output layer with 100 neurons in a single hidden layer.

Example shown in Fig. 2 illustrates modelled winding tempe-
rature represented by the red curve, and measured winding tempe-
rature represented by the blue curve. As well as differential error 
between the modelled and measured values which is represented 
by the green curve.
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B. Optimization process
As mentioned earlier, many different HPs are being fine-tuned 

during the optimization process. Given that the sample space for 
each HP is virtually infinite, it’s necessary to establish limitations 
for both the sample space and the sample step for each HP. Certain 
HPs which belong to the same group are interdependent, which 
implies that groups of interdependent HPs should be optimized at 
the same time. Yet, even if we limit their sample space and sample 
step, there can still be millions of different HP combinations. 

To manage this, HPs are initially sampled using a fairly large 
step. Once the best combination is found, sample space around the 
best HP values is resampled, effectively increasing the resolution. 
In this way, after several cycles of HP fine-tuning, the local opti-
mum is reached where further sampling doesn’t yield significant 
improvements to the model performance. 

Due to the large sample step initially employed in the optimiza-
tion process, there is a risk that the resulting optimum is local rather 
than local, which can be addressed in many ways, but only with an 
increase in optimization time.

Model optimization doesn’t only increase the model accu-
racy, but it is usually followed by faster training convergence. A 
characteristic which can be optimized for if it is necessary for the 
application.

C. Final model
The results of the final model are shown in Fig. 3, where mo-

delled and measured values of winding temperature are again re-
presented by red and blue curves, respectively.

Fig. 3. Comparison of real and modelled winding temperature for 
optimized model

Having reached full parametrization, the model no longer 
benefits from further fine-tuning in terms of relevant increase to 
the precision or convergence speed. The final model adopts the 
following topology: 3 neurons in the input layer, 38 neurons in the 
first hidden layer, 7 neurons in the second hidden layer and 1 neu-
ron in the output layer. Full convergence is reached after 153 iterati-
ons achieving a MSE of 0.189 and R2 coefficient of 0.995. Notably, 
when compared with the first iteration, the errors represented by 
the green curve in Fig. 3, are significantly smaller in cases where 
current values undergo sudden changes, or even when the model 
encounters anomalous data.

During training, the majority of the improvement in minimi-
zation of the loss function occurs in the first 10 iterations, ensuring 
high accuracy. While the remaining training iterations are dedica-
ted to achieving high precision of the model.

IV. Demonstration

A. Simulated condition deterioration
In order to demonstrate the main use case of the model, two di-

stinct deteriorating conditions were simulated. For the simulations, 
an exponential variable was added to the measured winding tem-
perature, which preserves the pattern of the series but exacerbates 
the overall shape to simulate a positive feedback loop of gradual 
worsening of the condition.

Fig. 4 and Fig 5. demonstrate comparisons between the mo-
delled and simulated deteriorating winding temperatures represen-
ted again by red and blue curves, respectively. While the differenti-
al error between these curves is depicted by the green curve.

Fig. 4. Comparison of simulated gradually deteriorating and modelled 
winding temperature

Fig. 5. Comparison of simulated suddenly deteriorating and modelled 
winding temperature

Both simulations commence exactly 42 days before the end of 
the data set as indicated by red vertical line in Fig. 6 and Fig. 7. The 
first example simulates a gradual deterioration of the condition, 
while the second example simulates at first a very minor imper-
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III. MODEL TRAINING AND OPTIMIZATION 
MLP models are characterized by many hyperparameters 

(HPs) which can roughly be divided between: model HPs, 
optimization algorithm HPs and backpropagation algorithm 
HPs. In order to validate the model accuracy, two common 
statistical measures were employed, mean squared error 
(MSE) value of which should be minimized and determination 
coefficient (R2), which should be maximized. 

A. First iteration 
The initial iteration of the model with mostly default 

settings already gives promising results with MSE of 0.79 and 
R2 of 0.978. However, it doesn’t converge over 200 iterations 
and exhibits a peak error exceeding 50°C in a specific case 
where the temperature and current measurement sensors 
experience a malfunction. This suggests that the model is 
overfitting and robustness is low, as anomalous data causes 
significant errors. 

 The default topological construction of this model consists 
only of input and output layer with 100 neurons in a single 
hidden layer. 

 
Fig. 2. Comparison of real and modelled winding temperature for default 
model 
 

Example shown in Fig. 2 illustrates modelled winding 
temperature represented by the red curve, and measured 
winding temperature represented by the blue curve. As well as 
differential error between the modelled and measured values 
which is represented by the green curve. 

B. Optimization process 
As mentioned earlier, many different HPs are being fine-

tuned during the optimization process. Given that the sample 
space for each HP is virtually infinite, it's necessary to 
establish limitations for both the sample space and the sample 
step for each HP. Certain HPs which belong to the same group 
are interdependent, which implies that groups of 
interdependent HPs should be optimized at the same time. Yet, 
even if we limit their sample space and sample step, there can 
still be millions of different HP combinations.  

To manage this, HPs are initially sampled using a fairly 
large step. Once the best combination is found, sample space 
around the best HP values is resampled, effectively increasing 
the resolution. In this way, after several cycles of HP fine-

tuning, the local optimum is reached where further sampling 
doesn’t yield significant improvements to the model 
performance.  

Due to the large sample step initially employed in the 
optimization process, there is a risk that the resulting optimum 
is local rather than local, which can be addressed in many 
ways, but only with an increase in optimization time. 

Model optimization doesn’t only increase the model 
accuracy, but it is usually followed by faster training 
convergence. A characteristic which can be optimized for if it 
is necessary for the application. 

C. Final model 
The results of the final model are shown in Fig. 3, where 

modelled and measured values of winding temperature are 
again represented by red and blue curves, respectively. 

 
Fig. 3. Comparison of real and modelled winding temperature for optimized 
model 

 
Having reached full parametrization, the model no longer 

benefits from further fine-tuning in terms of relevant increase 
to the precision or convergence speed. The final model adopts 
the following topology: 3 neurons in the input layer, 38 
neurons in the first hidden layer, 7 neurons in the second 
hidden layer and 1 neuron in the output layer. Full 
convergence is reached after 153 iterations achieving a MSE 
of 0.189 and R2 coefficient of 0.995. Notably, when compared 
with the first iteration, the errors represented by the green 
curve in Fig. 3, are significantly smaller in cases where current 
values undergo sudden changes, or even when the model 
encounters anomalous data. 

During training, the majority of the improvement in 
minimization of the loss function occurs in the first 10 
iterations, ensuring high accuracy. While the remaining 
training iterations are dedicated to achieving high precision of 
the model. 
 

IV. DEMONSTRATION 

A. Simulated condition deterioration 
In order to demonstrate the main use case of the model, two 

distinct deteriorating conditions were simulated. For the 
simulations, an exponential variable was added to the 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

III. MODEL TRAINING AND OPTIMIZATION 
MLP models are characterized by many hyperparameters 

(HPs) which can roughly be divided between: model HPs, 
optimization algorithm HPs and backpropagation algorithm 
HPs. In order to validate the model accuracy, two common 
statistical measures were employed, mean squared error 
(MSE) value of which should be minimized and determination 
coefficient (R2), which should be maximized. 

A. First iteration 
The initial iteration of the model with mostly default 

settings already gives promising results with MSE of 0.79 and 
R2 of 0.978. However, it doesn’t converge over 200 iterations 
and exhibits a peak error exceeding 50°C in a specific case 
where the temperature and current measurement sensors 
experience a malfunction. This suggests that the model is 
overfitting and robustness is low, as anomalous data causes 
significant errors. 

 The default topological construction of this model consists 
only of input and output layer with 100 neurons in a single 
hidden layer. 

 
Fig. 2. Comparison of real and modelled winding temperature for default 
model 
 

Example shown in Fig. 2 illustrates modelled winding 
temperature represented by the red curve, and measured 
winding temperature represented by the blue curve. As well as 
differential error between the modelled and measured values 
which is represented by the green curve. 

B. Optimization process 
As mentioned earlier, many different HPs are being fine-

tuned during the optimization process. Given that the sample 
space for each HP is virtually infinite, it's necessary to 
establish limitations for both the sample space and the sample 
step for each HP. Certain HPs which belong to the same group 
are interdependent, which implies that groups of 
interdependent HPs should be optimized at the same time. Yet, 
even if we limit their sample space and sample step, there can 
still be millions of different HP combinations.  

To manage this, HPs are initially sampled using a fairly 
large step. Once the best combination is found, sample space 
around the best HP values is resampled, effectively increasing 
the resolution. In this way, after several cycles of HP fine-

tuning, the local optimum is reached where further sampling 
doesn’t yield significant improvements to the model 
performance.  

Due to the large sample step initially employed in the 
optimization process, there is a risk that the resulting optimum 
is local rather than local, which can be addressed in many 
ways, but only with an increase in optimization time. 

Model optimization doesn’t only increase the model 
accuracy, but it is usually followed by faster training 
convergence. A characteristic which can be optimized for if it 
is necessary for the application. 

C. Final model 
The results of the final model are shown in Fig. 3, where 

modelled and measured values of winding temperature are 
again represented by red and blue curves, respectively. 

 
Fig. 3. Comparison of real and modelled winding temperature for optimized 
model 

 
Having reached full parametrization, the model no longer 

benefits from further fine-tuning in terms of relevant increase 
to the precision or convergence speed. The final model adopts 
the following topology: 3 neurons in the input layer, 38 
neurons in the first hidden layer, 7 neurons in the second 
hidden layer and 1 neuron in the output layer. Full 
convergence is reached after 153 iterations achieving a MSE 
of 0.189 and R2 coefficient of 0.995. Notably, when compared 
with the first iteration, the errors represented by the green 
curve in Fig. 3, are significantly smaller in cases where current 
values undergo sudden changes, or even when the model 
encounters anomalous data. 

During training, the majority of the improvement in 
minimization of the loss function occurs in the first 10 
iterations, ensuring high accuracy. While the remaining 
training iterations are dedicated to achieving high precision of 
the model. 
 

IV. DEMONSTRATION 

A. Simulated condition deterioration 
In order to demonstrate the main use case of the model, two 

distinct deteriorating conditions were simulated. For the 
simulations, an exponential variable was added to the 

Fig. 2. Comparison of real and modelled winding temperature for default 
model

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4 

measured winding temperature, which preserves the pattern of 
the series but exacerbates the overall shape to simulate a 
positive feedback loop of gradual worsening of the condition. 

Fig. 4 and Fig 5. demonstrate comparisons between the 
modelled and simulated deteriorating winding temperatures 
represented again by red and blue curves, respectively. While 
the differential error between these curves is depicted by the 
green curve. 
 

 
Fig. 4. Comparison of simulated gradually deteriorating and modelled 
winding temperature 
 

 
Fig. 5. Comparison of simulated suddenly deteriorating and modelled 
winding temperature 
 

Both simulations commence exactly 42 days before the end 
of the data set as indicated by red vertical line in Fig. 6 and 
Fig. 7. The first example simulates a gradual deterioration of 
the condition, while the second example simulates at first a 
very minor imperceptible deterioration of the condition which 
at one point causes a runaway effect. These simulations are 
further used to demonstrate and explore the systems capability 
to detect discrepancies between the modelled and measured 
values, as well as its sensitivity. 

B. Discrepancy detection and indicators 
While a human observer could detect divergence between 

modelled and measured winding temperatures, triggering 
further investigation into the condition of the transformer, that 
approach rests on inherent unreliability of human perception, 
judgement and diligence in monitoring. Thus, an alternative 
approach using statistical indicators is proposed. This 
approach, based on common statistical principles, generates 
limits automatically from past values to detect changes in 
trend. 

The first part of the process in creating the indicators 
involves using a moving window with three different widths: 
one day, one week and one month. With each new 
measurement, these windows shift forward, adding average, 
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The second part of the indicator is its activation function, 
which tracks the average, maximum, minimum and median 
values of each list. After a new measurement is taken (in this 
case every 15 minutes) and lists are updated, the activation 
function compares the new value being added to the list 
against the average, maximum, minimum and median values of 
the whole list. If, for example, the new value is a new 
maximum median in the daily medians list, the corresponding 
indicator would be triggered. For this purpose, a total of 36 
indicators were created. However, due to practical 
considerations, only a select number of these indicators are 
presented in this paper. 

These indicators were not envisioned to function 
individually, but rather in tandem, as different indicators track 
changes in different timeframes, and different activation 
functions have different sensitivities. In practice, it would also 
be advisable to confirm that these activations were not a 
anomalies by observing successive indicator activations for a 
desired timeframe. These statistical measures and their 
respective activation functions can detect a deterioration in the 
condition far sooner and with firmer evidence than a human 
observer relying solely on visual comparison of the modelled 
and real winding temperature. 
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each depicting a specific time interval in which corresponding 
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interval in orange and monthly interval in cyan. These curves 
subsequently serve as lists of values upon which activation 
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simulation group. 
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measured winding temperature, which preserves the pattern of 
the series but exacerbates the overall shape to simulate a 
positive feedback loop of gradual worsening of the condition. 

Fig. 4 and Fig 5. demonstrate comparisons between the 
modelled and simulated deteriorating winding temperatures 
represented again by red and blue curves, respectively. While 
the differential error between these curves is depicted by the 
green curve. 
 

 
Fig. 4. Comparison of simulated gradually deteriorating and modelled 
winding temperature 
 

 
Fig. 5. Comparison of simulated suddenly deteriorating and modelled 
winding temperature 
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ceptible deterioration of the condition which at one point causes a 
runaway effect. These simulations are further used to demonstrate 
and explore the systems capability to detect discrepancies between 
the modelled and measured values, as well as its sensitivity.

B. Discrepancy detection and indicators
While a human observer could detect divergence between 

modelled and measured winding temperatures, triggering further 
investigation into the condition of the transformer, that approach 
rests on inherent unreliability of human perception, judgement and 
diligence in monitoring. Thus, an alternative approach using stati-
stical indicators is proposed. This approach, based on common sta-
tistical principles, generates limits automatically from past values 
to detect changes in trend.

The first part of the process in creating the indicators involves 
using a moving window with three different widths: one day, one 
week and one month. With each new measurement, these windows 
shift forward, adding average, standard deviation, and median va-
lues to their respective lists. 

The second part of the indicator is its activation function, which 
tracks the average, maximum, minimum and median values of each 
list. After a new measurement is taken (in this case every 15 minutes) 
and lists are updated, the activation function compares the new value 
being added to the list against the average, maximum, minimum and 
median values of the whole list. If, for example, the new value is a 
new maximum median in the daily medians list, the corresponding 
indicator would be triggered. For this purpose, a total of 36 indicators 
were created. However, due to practical considerations, only a select 
number of these indicators are presented in this paper.

These indicators were not envisioned to function individually, 
but rather in tandem, as different indicators track changes in diffe-
rent timeframes, and different activation functions have different 
sensitivities. In practice, it would also be advisable to confirm 
that these activations were not a anomalies by observing succe-
ssive indicator activations for a desired timeframe. These statisti-
cal measures and their respective activation functions can detect a 
deterioration in the condition far sooner and with firmer evidence 
than a human observer relying solely on visual comparison of the 
modelled and real winding temperature.

1) Simulation of gradual condition deterioration
Fig. 6 presents four separate graphs each representing a spe-

cific statistical measure. Each graph contains three curves each 
depicting a specific time interval in which corresponding statisti-
cal measures are taken: daily interval in purple, weekly interval in 
orange and monthly interval in cyan. These curves subsequently 
serve as lists of values upon which activation conditions of indivi-
dual indicators are applied.

Fig. 6. Moving window curves of maximum, average, standard 
deviation, and median differential error in winding temperature over 
daily, weekly, and monthly intervals

Table II of indicator performance highlights the earliest acti-
vation times for indicators from the gradual condition simulation 
group.

Table II

Indicator Performance for Simulated Gradual Condition 
Deterioration

In case of gradual condition deterioration, the average activa-
tion time for the better performing indicators is about 11 days, or 
as shown in Fig. 7 by the light green curve, at 4.29% deviation 
between the model and simulation. After 12 days and 15 hours, 
six indicators would be activated which would strongly indicate 
the existence of a progressive negative process in the transformer 
which is indicated by the brown vertical line.

Fig. 7. Average activation time of indicators for simulated gradual 
condition deterioration visualized on absolute and percentage errors

2) Simulation of sudden condition deterioration
Fig. 8 again presents four separate graphs each representing a 

specific statistical measure, where each graph contains three curves 
depicting daily, weekly and monthly time intervals for correspon-
ding statistical measures in purple, orange and cyan, respectively. 
As in the case of previous simulation, these curves subsequently 
serve as lists of values upon which activation conditions of indivi-
dual indicators are applied.

Earliest activation times of indicators belonging to the simula-
tion of sudden condition deterioration group are shown in Table II.

The average activation time of indicators for the simulated case 
of sudden condition deterioration is 32 days, or as shown in the Fig. 
9 by the light green curve, at 2.08% of deviation between model 
and simulation values. However, when values around the moment 
of activation are observed, the deviation is similar to the value in 
the case of gradual condition deterioration. After 33 days and 21 
hours from the start of the simulated deterioration, nine indicators 
would be activated which would present a very strong indication of 
the existence of a progressive negative process in the transformer.
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measured winding temperature, which preserves the pattern of 
the series but exacerbates the overall shape to simulate a 
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considerations, only a select number of these indicators are 
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changes in different timeframes, and different activation 
functions have different sensitivities. In practice, it would also 
be advisable to confirm that these activations were not a 
anomalies by observing successive indicator activations for a 
desired timeframe. These statistical measures and their 
respective activation functions can detect a deterioration in the 
condition far sooner and with firmer evidence than a human 
observer relying solely on visual comparison of the modelled 
and real winding temperature. 

1) Simulation of gradual condition deterioration 
Fig. 6 presents four separate graphs each representing a 

specific statistical measure. Each graph contains three curves 
each depicting a specific time interval in which corresponding 
statistical measures are taken: daily interval in purple, weekly 
interval in orange and monthly interval in cyan. These curves 
subsequently serve as lists of values upon which activation 
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Fig. 6. Moving window curves of maximum, average, standard deviation, and 
median differential error in winding temperature over daily, weekly, and 
monthly intervals 
 
Table II of indicator performance highlights the earliest 
activation times for indicators from the gradual condition 
simulation group. 
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In case of gradual condition deterioration, the average 

activation time for the better performing indicators is about 11 
days, or as shown in Fig. 7 by the light green curve, at 4.29% 
deviation between the model and simulation. After 12 days and 
15 hours, six indicators would be activated which would 
strongly indicate the existence of a progressive negative 
process in the transformer which is indicated by the brown 
vertical line. 

 
Fig. 7. Average activation time of indicators for simulated gradual condition 
deterioration visualized on absolute and percentage errors 
 

2) Simulation of sudden condition deterioration 
Fig. 8 again presents four separate graphs each representing 

a specific statistical measure, where each graph contains three 
curves depicting daily, weekly and monthly time intervals for 
corresponding statistical measures in purple, orange and cyan, 
respectively. As in the case of previous simulation, these 
curves subsequently serve as lists of values upon which 
activation conditions of individual indicators are applied. 

 

Fig. 8. Moving window curves of maximum, average, standard deviation, and 
median differential error in winding temperature over daily, weekly, and 
monthly intervals 
 

Earliest activation times of indicators belonging to the 
simulation of sudden condition deterioration group are shown 
in Table II. 

The average activation time of indicators for the simulated 
case of sudden condition deterioration is 32 days, or as shown 
in the Fig. 9 by the light green curve, at 2.08% of deviation 
between model and simulation values. However, when values 
around the moment of activation are observed, the deviation is 
similar to the value in the case of gradual condition 
deterioration. After 33 days and 21 hours from the start of the 
simulated deterioration, nine indicators would be activated 
which would present a very strong indication of the existence 
of a progressive negative process in the transformer. 
 

 
It is notable that two indicators perform significantly better 

than the rest, which deserves further investigation into their 
applicability and consideration if they are prone to false-
positive activation. Delayed times of activation are expected as 
the negative process in the second simulation starts off much 
slower, but ramps up in intensity significantly at a certain point 
in time. 

 
Fig. 9. Average activation time of indicators for simulated sudden condition 
deterioration visualized on absolute and percentage errors 
 

V. CONCLUSION 
This approach to modelling of transformer winding 

temperature proves to be fairly accurate, with only extreme 
outliers and sudden changes in the winding current causing 
larger errors. These instances do not present a significant issue 

TABLE III 
INDICATOR PERFORMANCE FOR SIMULATED SUDDEN CONDITION 

DETERIORATION 

List Activation Time 

AVG(d) max 33d 21h 
AVG(w) max 35d 7h 
STD(d) avg 9d 18h 
STD(w) avg 31d 13h 
STD(m) max 33d 13h 
MED(d) max(min) 33d 11h 
MED(d) med 3d 18h 
MED(w) max(min) 33d 8h 
MED(w) med 27d 8h 
MED(m) med 32d 23h 

 

TABLE II 
INDICATOR PERFORMANCE FOR SIMULATED GRADUAL CONDITION 

DETERIORATION 

List Activation Time 

AVG(d) max 16d 10h 

AVG(w) max 17d 7h 

STD(d) avg 9d 17h 

STD(w) avg 11d 14h 

STD(m) max 12d 15h 

MED(d) max(min) 11d 23h 

MED(d) med 3d 17h 

MED(w) max(min) 14d 7h 

MED(w) med 8d 21h 

MED(m) max(min) 21d 22h 
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slower, but ramps up in intensity significantly at a certain point 
in time. 
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outliers and sudden changes in the winding current causing 
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List Activation Time 
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Table III

Indicator Performance for Simulated Sudden Condition 
Deterioration

It is notable that two indicators perform significantly better 

than the rest, which deserves further investigation into their appli-
cability and consideration if they are prone to false-positive acti-
vation. Delayed times of activation are expected as the negative 
process in the second simulation starts off much slower, but ramps 
up in intensity significantly at a certain point in time.

Fig. 9. Average activation time of indicators for simulated sudden 
condition deterioration visualized on absolute and percentage errors

V. Conclusion
This approach to modelling of transformer winding tempera-

ture proves to be fairly accurate, with only extreme outliers and 
sudden changes in the winding current causing larger errors. These 
instances do not present a significant issue as the errors are neither 
large nor long-lasting. Additionally, the indicators are resistant to 
errors as they are based on statistical measures which smooth out 
any outliers given that they are infrequent enough to still be con-
sidered as outliers. Furthermore, the very purpose of indicators is 
to spot long-term changes in the trends within the transformer and 
not single outliers. 

Despite the models effectiveness, there could be room for 
further improvement. Should the models accuracy be enhanced by 
reduction in absolute error, the indicators would be more sensitive 
to the deviations between the real and modelled winding tempera-
ture. More sensitive indicators should be tested for false positives, 
and exploration of different indicator activation conditions as well 
as moving window statistical measures could yield further benefits. 

The approach merits real-time testing to validate its proposed 
applicability. Several steps could be taken to further enhance the 
model’s accuracy. For instance, exploring certain other approaches 
to machine learning could yield a more accurate model. Variables 
such as state of active cooling, direction of power flow or ratios 
between real and reactive power could increase the accuracy of 
the model. 

Looking ahead, the process of data gathering and proce-
ssing can be algorithmically automated. This coupled with novel 
approaches to machine learning could open the the possibility to 
create general models for transformers belonging to the same line 
of products.
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simulation of sudden condition deterioration group are shown 
in Table II. 
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V. CONCLUSION 
This approach to modelling of transformer winding 

temperature proves to be fairly accurate, with only extreme 
outliers and sudden changes in the winding current causing 
larger errors. These instances do not present a significant issue 
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It is notable that two indicators perform significantly better 

than the rest, which deserves further investigation into their 
applicability and consideration if they are prone to false-
positive activation. Delayed times of activation are expected as 
the negative process in the second simulation starts off much 
slower, but ramps up in intensity significantly at a certain point 
in time. 

 
Fig. 9. Average activation time of indicators for simulated sudden condition 
deterioration visualized on absolute and percentage errors 
 

V. CONCLUSION 
This approach to modelling of transformer winding 

temperature proves to be fairly accurate, with only extreme 
outliers and sudden changes in the winding current causing 
larger errors. These instances do not present a significant issue 
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List Activation Time 

AVG(d) max 33d 21h 
AVG(w) max 35d 7h 
STD(d) avg 9d 18h 
STD(w) avg 31d 13h 
STD(m) max 33d 13h 
MED(d) max(min) 33d 11h 
MED(d) med 3d 18h 
MED(w) max(min) 33d 8h 
MED(w) med 27d 8h 
MED(m) med 32d 23h 

 

TABLE II 
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In case of gradual condition deterioration, the average 
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vertical line. 

 
Fig. 7. Average activation time of indicators for simulated gradual condition 
deterioration visualized on absolute and percentage errors 
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deviation, and median differential error in winding temperature over 
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