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SUMMARY
The paper presents a resistive voltage divider (RVD), developed for power measurements at much higher frequencies than the traditional 50 Hz.  The 
design of the RVD and the methods of its evaluation are described.  The RVD is intended to be used in a digital sampling wattmeter application based 
on National Instruments PXI-4461 Dynamic Signal Analyzer. The design of the divider includes individual copper guards for each resistor, driven by 
the auxiliary chain of resistors. To reduce the leakage currents, the PTFE terminals are applied between pins of the resistors and the printed circuit 
board.
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INTRODUCTION
The resistive voltage divider (RVD) presented in this paper was designed 
with the main goal to be used in a digital sampling wattmeter applica-
tion based on National Instruments PXI-4461 Dynamic Signal Analyzer. 
Since the peak input voltage of PXI 4461 Dynamic Signal Analyzer cards 
is constrained to 42.4 V maximum, the mains voltage (i.e. 230 V) has to 
be lowered using an instrument transformer or a voltage divider. In [1] a 
voltage instrument transformer (VIT), developed for the same application 
was presented. The development of the RVD was triggered with a goal to 
further decrease the ratio and phase angle error of the voltage transducer, 
thus improving the accuracy of the wattmeter.

As high-precision voltage transducers in power measurements, two types 
of transducers are eligible for the implementation: inductive voltage divi-
ders (IVD) [2], and recently, resistive voltage dividers (RVD) [3-5]. The need 
for the much wider frequency range than traditional 50 Hz, required the use 

of RVDs instead of IVD. The goal was to extend the frequency bandwidth 
from 50 Hz to at least 3 kHz. In the audio frequency range the performance 
of IVDs are not satisfying, or their design is very difficult. Consequently, 
the frequency range of IVDs is too narrow, and the nonlinearity of their 
ferromagnetic core induces the harmonic distortion of the voltage [2-5]. 
The main purpose of this paper is to present the design of the RVD re-
cently developed within our research group at FER-ZOEEM, with the spe-
cial emphasis on the design issues as the guarding, leakage currents and 
the measurement procedures for the determination of the accuracy. The 
nominal ratio of the resistive divider is Vin/Vout=560 V/ 10 V.

The paper is organized as follows: in Section II the design principles of the 
RVD are described, Section III presents the measurement system based 
on NI 4461 cards for the characterization of the RVD. Section IV gives the 
measurement results of the implementation of the proposed method using 
a NI PXI system and Section V gives the uncertainty analysis. Finally, Sec-
tion VI are conclusions.

This work was fully supported by Croatian Science Foundation under the project Metrological infra-
structure for smart grid IP-2014-09-8826.
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DESIGN PRINCIPLES
Fig. 1 presents the equivalent circuit diagram of the guarded resistive di-
vider.  The parasitic capacitances are marked in dashed lines, C0 is the in-
put capacitance of the instrument measuring the output voltage (including 
cable capacitance). Rgn are resistances of the auxiliary chain of resistors. 

Fig. 1. Equivalent circuit diagram of the divider

The ratio of the divider is defined as:

                   (1)

The leakage current through the main printed circuit board (PCB) could 
increase the phase and ratio errors of RTD. In order to reduce this effect, 
the resistors consisting the divider are soldered on the polytetrafluoro-
ethylene (PTFE) insulated terminals, as depicted in the Fig. 2, similarly to 
the design described in [6].

Fig. 2.  Lateral view of resistor mounts: a) connection diagram b) photo of the device

The divider is consisted of n=25 resistors with the nominal value equal to 
R=4.4 kΩ and one resistors with the nominal value R0=2 kΩ, which gives 
according to (1) the nominal ratio of the divider 560 V/10 V. All resistors 
are Vishay S series bulk metal foil (BMF), high precision resistors, model 
number S102C, with the ambient power rating 0.6 W at 70C. The typical 
temperature coefficient of resistance (TCR), declared by Vishay is  ppm/C, 
for all resistors in the divider. The balanced TCRs in all resistors of the 
divider minimize the change of the ratio of the divider for different input 
voltages, and enables measuring of the ratio and phase angle responses 
of the divider at the voltage lower than nominal.

Fig. 3 presents the complete circuit diagram of the divider with the auxiliary 
chain of resistors and guards. Resistors R1 – R26 are resistors consisting 
the divider, with the values R1 – R25=R and R26=R0. Resistors R27 – R53 are 
forming the auxiliary chain. The resistors in the auxiliary chain are chosen 
in such a way that the guard of the each resistor in the divider is approxi-

mately at the potential equal to the potential of the half of the correspon-
ding resistor in the main chain. In such a way the voltages at the parasitic 
capacitances from Fig. 1 are minimal, and consequently the influence of 
the parasitic capacitances are reduced. Taking into account the standard 
values of the resistors, the resistors in the auxiliary bridge are taken with 
the nominal values R27= 2.2 kΩ, R28 – R51=4.7 kΩ, R52=R53=2.2 kΩ. The re-
sistors R28 – R51 in the auxiliary chain are standard metalfilm resistors, cho-
sen from a lot of 88 resistors.  The resistances of all resistors in the set were 
measured prior the assembling using the 4-wire technique and a 61/2 digit 
multimeter Keysight 34465A, and 24 resistors with mutually closest values 
were chosen for the assembling.  To reduce the loop area and the parasitic 
inductance, and in the same time to ensure the more compact physical 
dimensions of the divider, the resistors in the divider in the final layout of 
the PCB are arranged in two parallel rows (Fig. 4), connected together with 
a short piece of the coaxial cable Amphenol 223/U with the sleeve cable at 
the corresponding resistor guard potential. Fig. 4 depicts the PCB with the 
resistors and guards during the assembling.

Fig. 3. Circuit diagram of the divider with the auxiliary chain of resistors and guards
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Fig. 4. The divider during assembling

MEASUREMENT SYSTEM
The measurement set-up was consisted of National Instruments PXI 
system, equipped with the acquisition cards (DAQ) NI PXI 4461. Time 
clock synchronization was accomplished using the internal PCI bus that 
divides 33 MHz clock. The additional synchronization of the start of the 
measurement process was achieved using a PXI trigger bus.  Fig. 5 pre-
sents the block diagram of the measurement system, while the Fig. 6 
shows the measurement set-up. The coaxial cable for the connection of 
the RVD to the NI 4461 card was the same that will be used in the sampling 
wattmeter application. In such a way, the load impedance, which affects 
transfer function of the divider, is the same as in the wattmeter application. 
The load impedance is consisted of the cable capacitance shunted by the 
input impedance of the card (1 MΩ paralleled by 217 pF). All inputs of the 
cards were configured in differential configuration.

Fig. 5. Block diagram of the measurement system

Fig. 6.  Measurement set-up

The PXI system generates the stimulus signal, which is fed to the power 
amplifier based on Apex MP111 power operational amplifier and EK57 
evaluation kit. The signal from the power amplifier is brought to the input 
of the divider. The input and output voltages of the RVD are brought to a 
NI PXI 4461 card.

The needed software was entirely programmed in-house in the NI LabView 
environment. The measurement process starts with the definition of the 
frequency range, magnitude and the set of replicate measurement for the 
averaging process. The communication between LabView application and 
the PXI system is accomplished using the Ethernet protocol and the insti-
tutional local area network (LAN), thus enabling distant start and control of 
the measurements. All the parameters are transferred to the PXI client that 
adjusts the magnitude and frequency, performs the measurements and 
sends the measurement results to the personal computer.

MEASUREMENT RESULTS
The measurement results are consisted of two main parts: the measure-
ment of the ratio of the divider, and the measurement of the phase shift of 
the RVD. 

The ratio and the phase shift are measured in a wider frequency bandwidth 
than defined by the international standard EN 50160, which defines mea-
surement of the harmonics and interharmonics up to the 40th harmonic of 
the fundamental frequency. The frequency response of the ratio and phase 
shift have been measured in two ranges: 

(i) Lower range, covering two sets of first 50 harmonics of funda-
mental harmonics equal to 50 Hz and 60 Hz (frequencies up to 3 kHz)

(ii) Extended range, covering the frequencies up to 50 kHz

The ratio of the divider is in all subsequent results defined as
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denotes the phase angle of 
the input signal. Fig. 7 presents the ratio of the divider for the frequencies 
below 3 kHz. Fig. 8 presents the phase shift for the same frequency range. 
Fig. 9 and 10 present the ratio and the phase angle of the divider for the 
extended frequency range.

Fig. 7. Ratio of the RVD for the freqeuncies bellow 3 kHz

Fig. 8. Phase angle of the RVD for the freqeuncies bellow 3 kHz
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V. UNCERTAINTY ANALYSIS 
The digitizer NI-PXI4461 has a two-channel 24-b 

sigma-delta A/D converter. A very significant parameter 

in characterizing a digitizer is the integral nonlinearity 
(INL), and its INL is smaller than 1 μV/V at frequencies 
higher than 40 Hz. The large INL (maximum INL is more 
than 80 μV/V) appears at lower frequencies, accompanied 
with a significant hysteresis, which can be atributed to 
thermal effects [7]. For 1 V signal amplitude, 1 V input 
range and 51.2 kS/s sampling frequency and 
simultaneous sampling, the digitizer's full metrological 
properties are as follows [8]: the temperature coefficients 
of the magnitude and phase are 7.4 μV/V/K and 
0.000008  /K. The standard deviation of the magnitude of 
the voltage ratio is 2.3 μV/V. The deviation of the 
magnitude of the voltage ratio from the nominal value is 
within 3 μV/V. The phase deviation is less than 16 μ   .    

At 40 Hz the ratio of the RVD is 56.116 V/V where 
the nominal ratio is 56 V/V. The ratio of the RVD at 100 
Hz is 56.116 V/V, and at 3 kHz it equals 56.117 V/V. 
According to Fig. 7, for the frequency range below 3 kHz 
it reaches the maximum value equal to 56.118 V/V and 
minimum value equal to 56.110 V/V, both for the 
frequencies between 1kHz and 3 kHz. Therefore, the 
maximum ratio error for the first 60 harmonics is below 
0.011 %. 

The phase angle at 40 Hz is   -0.0211   , and at 100 Hz 
it is -0.0250   . Finally, the phase angle is -0.6010   at 3 
kHz. From the Fig. 6 it may be concluded that the phase 
angle changes linearly with the slope -0.2   /kHz. 
 

VI. CONCLUSION 
 
The resistive voltage divider, intended for the use in a 

sampling wattmeter application is developed and 
manufactured. 

According to these results, the errors of the divider are 
within satisfying limits, and it yields significantly better 
results than a previously developed instrument voltage 
transformer [1] for a laboratory sampling wattmeter based 
on the NI 4461 DAQ. The RVD will be used  in line with 
a set of precise current shunts of the cage type already 
developed at our laboratory. 

The presented design is also a good basis for the 
further improvements that will possibly decrease the 
phase angle error. It can be achieved using the active 
elements (e.g. operational amplifiers) and compensation 
of the load capacitance, which is the main factor affecting 
the phase angle error. Those improvements will be 
necessary if the improved design of the RVD will be 
implemented in a future power standard. 
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Fig. 9. Ratio of the RVD for the extended frequency range 

Fig. 10. Phase angle of the RVD for the extended frequency range

UNCERTAINTY ANALYSIS
The digitizer NI-PXI4461 has a two-channel 24-b sigma-delta A/D conver-
ter. A very significant parameter in characterizing a digitizer is the integral 
nonlinearity (INL), and its INL is smaller than 1 μV/V at frequencies higher 
than 40 Hz. The large INL (maximum INL is more than 80 μV/V) appears 
at lower frequencies, accompanied with a significant hysteresis, which 
can be atributed to thermal effects [7]. For 1 V signal amplitude, 1 V input 
range and 51.2 kS/s sampling frequency and simultaneous sampling, the 
digitizer’s full metrological properties are as follows [8]: the temperature 
coefficients of the magnitude and phase are 7.4 μV/V/K and 0.000008 /K. 
The standard deviation of the magnitude of the voltage ratio is 2.3 μV/V. 
The deviation of the magnitude of the voltage ratio from the nominal value 
is within 3 μV/V. The phase deviation is less than 16 μ.   

At 40 Hz the ratio of the RVD is 56.116 V/V where the nominal ratio is 56 
V/V. The ratio of the RVD at 100 Hz is 56.116 V/V, and at 3 kHz it equals 
56.117 V/V. According to Fig. 7, for the frequency range below 3 kHz it 
reaches the maximum value equal to 56.118 V/V and minimum value equal 
to 56.110 V/V, both for the frequencies between 1kHz and 3 kHz. There-
fore, the maximum ratio error for the first 60 harmonics is below 0.011 %.

The phase angle at 40 Hz is   -0.0211, and at 100 Hz it is -0.0250. Finally, 
the phase angle is -0.6010at 3 kHz. From the Fig. 6 it may be concluded 
that the phase angle changes linearly with the slope -0.2/kHz.

CONCLUSION
The resistive voltage divider, intended for the use in a sampling wattmeter 
application is developed and manufactured.

According to these results, the errors of the divider are within satisfying 
limits, and it yields significantly better results than a previously developed 
instrument voltage transformer [1] for a laboratory sampling wattmeter ba-
sed on the NI 4461 DAQ. The RVD will be used  in line with a set of precise 
current shunts of the cage type already developed at our laboratory.

The presented design is also a good basis for the further improvements 
that will possibly decrease the phase angle error. It can be achieved using 
the active elements (e.g. operational amplifiers) and compensation of the 
load capacitance, which is the main factor affecting the phase angle error. 
Those improvements will be necessary if the improved design of the RVD 
will be implemented in a future power standard.
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the phase angle error. Those improvements will be 
necessary if the improved design of the RVD will be 
implemented in a future power standard. 
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Fig. 7. Ratio of the RVD for the freqeuncies bellow 3 kHz 
 

 
 

Fig. 8. Phase angle of the RVD for the freqeuncies bellow 3 kHz 
 

 
 

Fig. 9. Ratio of the RVD for the extended frequency range  

 
Fig. 10. Phase angle of the RVD for the extended frequency range 
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VI. CONCLUSION 
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sampling wattmeter application is developed and 
manufactured. 

According to these results, the errors of the divider are 
within satisfying limits, and it yields significantly better 
results than a previously developed instrument voltage 
transformer [1] for a laboratory sampling wattmeter based 
on the NI 4461 DAQ. The RVD will be used  in line with 
a set of precise current shunts of the cage type already 
developed at our laboratory. 

The presented design is also a good basis for the 
further improvements that will possibly decrease the 
phase angle error. It can be achieved using the active 
elements (e.g. operational amplifiers) and compensation 
of the load capacitance, which is the main factor affecting 
the phase angle error. Those improvements will be 
necessary if the improved design of the RVD will be 
implemented in a future power standard. 
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