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SUMMARY
The work sets out the results of the theory/methodological refinement of models whereby peak generating plants are included in the reliability and 
availability patterns of electricity systems while operational planning operations are taking place. Account shall be taken of the technical and energy 
characteristics of such generating units, as well as of the specific conditions and requirements imposed on such generating units, resulting from their 
location and the role in covering peak loads and consumption of the electricity system. 
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INTRODUCTION
The general problem of data collection, statistical treatment and calcula-
tion of parameters and indicators for the establishment of generating units 
models during operational planning operations, as well as the means of 
access and solutions to the problem of the incorporation of generating 
units in the reliability and availability model of the electricity system, have 
so far been further processed and exposed in a number of works (L1 to L1 
6). Processing in this work includes a general model of a peak load power 
plant, but also complex models, an extended model which distinguishes 
between peak plants and start-up failures at the start and during operation, 
and the model of the peak load plant with the possible postponement of 
exit from the operation. 

The complex models shall be with a view to distinguishing between failures 
during start-up and failures during operation mode of the peak load plant, 
but also to include the possibility of plant outage postponability, depend-
ing on the gravity and type of failure during operation. This introduces the 
possibility to include additional demands and operative characteristics in 
the calculations of indicators of the availability and reliability of generating 
units which cover peak portions of the load diagram, which means that 
they are relatively often entering and leaving the plant, often changing rap-
idly the load level, which is subject to specific additional stress and heavier 
operating conditions, including special additional requirements and opera-
tional features. Of course, the possibility of distinguishing the degree and 
the seriousness of failure at the starting and running of the peak generating 

unit opens the possibility for part of the faults incurred at the start to be 
removed during the presence of the need or by the requirement to drive 
the peak generating unit, and to enter the plant. In a similar manner, the 
distinction between the degree and the seriousness of failure during oper-
ation, or rather, by introducing the possibility that depending on the degree 
of failure, the peak plant remains in operation, allows for the extension of 
its operation. Both have a direct impact on the status and indicators of the 
availability and reliability of the power system.

FOUR-STATE PEAK PLANT MODEL
The four-state peak plant model, as shown in Figure 1, shall be used to 
include in the estimation of the reliability and availability indicator of the 
electric power system the plants that cover the peak part of the load dia-
gram, which are subjected to higher stresses due to frequent entries and 
exits from operation i.e. start-ups and shut-offs [L9], [L10] and [L11]. In ad-
dition to the faults occurring during the operation, failures can occur when 
the plant is placed in operation. The failure of the installation shall result in 
the plant being unable to meet the prescribed load for part of for the entire 
duration of the need for that load. The repeated reattempt at commission-
ing of the same plant for a specified period of service shall not be treated 
as more than one starting failure. Therefore, the probability of the commis-
sioning plant shall be carefully assessed in case when data are kept for the 
overall number of putting into service only. 
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Figure 1 – The four-state model of the peak load plant

There is no transition from the status of the plant reserve shut-down to the 
condition of failure when its activation is not required, due to the fact that 
the number of such transition is negligible and it is reasonable to assume 
that the plan cannot fail when it is shut off because of the reserve or if it 
is not in operation. Any discovery of conditions that may lead to forced 
unavailability on the basis of a back-up disconnection may be associated 
with cases of repeated failures, such as the occurrence of such conditions 
during inspection or overhaul.

According to Figure 1, the Markov process, which describes the four-state 
model of the peak load plant, describes the following system of linear dif-
ferential equations:

(1)
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System (4) with an identity equation 
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In order to determine model parameters, the following data is needed: 

is the derivation of probability of state “i” in relation 
to time “t”,

- is probability of state “i” (i = 0, 1, 2, ..., n).
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where: 
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Figure 1 – The four-state model of the peak load plant 

There is no transition from the status of the plant reserve shut-down to the condition of failure when 

its activation is not required, due to the fact that the number of such transition is negligible and it is 

reasonable to assume that the plan cannot fail when it is shut off because of the reserve or if it is not 

in operation. Any discovery of conditions that may lead to forced unavailability on the basis of a 

back-up disconnection may be associated with cases of repeated failures, such as the occurrence of 

such conditions during inspection or overhaul. 

According to Figure 1, the Markov process, which describes the four-state model of the peak load 

plant, describes the following system of linear differential equations: 

Legend (Figure 1): 

   “0” - the state of the plant reserve shut-down, 

   “1” - the state of the plant failure when drive is not being required, 

   “2” - the state of the plant drive when drive is being required, 

   “3” - the state of the plant failure when drive is being required, 

      - the plant failure rate, 

     - the plant repair rate, 

     - the rate of occurrence of the need for the drive,      

     - the rate of termination of the need for the drive, 

   PS  - the probability of plant failure during the start-up. 

“2” 
( )1 PS 
 



 

“0” 

“1” “3” 

  PS 
 

 



 


 
Plant drive  
is required 

Plant drive is  
not required 

 

Plant  
failure 

Plant readiness 
for operation 

                                                                                                                                                     

                                                                           4 

P t P t P t P t

P t P t P t

P t P P t P t P t

P t P P t P t P t P t
s

s

0 0 1 2

1 1 3

2 0 2 3

3 0 1 2 3

1



 


 


 


  

   

   

    

    

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

  

  

   

    

                              (1) 

where: 
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 - (
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)t(dPi=  ) - is the derivation of probability of state “i” in relation to time “t”, 

P ti ( )  - is probability of state “i” (i = 0, 1, 2, ..., n). 

Under the assumption that when t = 0, the power plant is functional, the starting conditions are: 
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In order to determine model parameters, the following data is needed: 

Mićo Klepo, Vladimir Mikuličić, Zdenko Šimić, Peak Plant Models in the Electric Power System Model of Reliability and Availability, Journal of Energy, 
vol. 69 Number 2 (2020), p. 24–36 
https://doi.org/10.37798/202069230
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However, this is not a good measure of risk that the plant will not be able to cover the intended part 

of the peak load, provided it occurs. This measure is defined by the term 
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In fact, it is a reasonable conditional probability in relation to the phenomenon and the length of the 

need for drive, which means provided that the need arises. As the duration of operation is 

prolonged, thus P1 tends to zero, and the risks of the plants in terms of (9) and (10) are put on an 

equal footing. A conditional probability can easily be estimated as follows: for a longer period of 

time, an estimated value of P2  can be obtained as a ratio between the hours of operation (SP) and 

the sum of the hours of availability (RH) and the contingency hours (SK) (L11 and L13): 

SKRH
SP

P̂2 +
=                                                                        (11) 

where: 

2P̂  - the estimated value of the peak plant probability of operation when operation is needed.  

Thus, the period of time of situation when the plant is out of operation due to repairs, maintenance, 

or any other planned shutdown is excluded. The probability of failure, i.e. P P1 3 , is estimated as 

the ratio of the number of hours when the plant is not available for work due to failures (SK) and the 

sum of the number of hours when it is available (RH) and the contingency hours (SK): 

(   )P P
SK

RH SK1 3 
                                                       

(12) 

where: 

1P̂  - the estimated value of the peak plant failure probability when drive is not needed, 

 3P̂  - the estimated value of the peak unit failure probability when drive is needed. 

In order to determine the risk of unavailability of the plant in the event of the need for drive, taking 

account of the estimated values by terms (11) and (12), factor  shall be introduced into term (10) 

determined as 

	 (10)
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where:

P2 - the estimated value of the peak plant probability of operation when 
operation is needed. 

Thus, the period of time of situation when the plant is out of operation due 
to repairs, maintenance, or any other planned shutdown is excluded. The 
probability of failure, i.e. P1+ P3, is estimated as the ratio of the number of 
hours when the plant is not available for work due to failures (SK) and the 
sum of the number of hours when it is available (RH) and the contingency 
hours (SK):
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In fact, it is a reasonable conditional probability in relation to the phenomenon and the length of the 

need for drive, which means provided that the need arises. As the duration of operation is 

prolonged, thus P1 tends to zero, and the risks of the plants in terms of (9) and (10) are put on an 

equal footing. A conditional probability can easily be estimated as follows: for a longer period of 

time, an estimated value of P2  can be obtained as a ratio between the hours of operation (SP) and 

the sum of the hours of availability (RH) and the contingency hours (SK) (L11 and L13): 
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where: 
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or any other planned shutdown is excluded. The probability of failure, i.e. P P1 3 , is estimated as 
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where: 

1P̂  - the estimated value of the peak plant failure probability when drive is not needed, 

 3P̂  - the estimated value of the peak unit failure probability when drive is needed. 

In order to determine the risk of unavailability of the plant in the event of the need for drive, taking 

account of the estimated values by terms (11) and (12), factor  shall be introduced into term (10) 

determined as 
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where:

P1- the estimated value of the peak plant failure probability when drive is 
not needed,  
P2 - the estimated value of the peak unit failure probability when drive is 
needed.

In order to determine the risk of unavailability of the plant in the event of the 
need for drive, taking account of the estimated values by terms (11) and 
(12), factor x shall be introduced into term (10) determined as
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after which the probability of the plant unavailability for operation when drive is needed, i.e. the 

estimated value of this probability, shall have the following forms: 
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The factor  for weighting is the contingency hours (SK) reflecting the cumulative number of 

contingencies occurring during the period of operation. Depending on the operating cycle and the 

duration of contingencies, this factor represents the contribution of hours of the plant failure when 

operation needed to the total number of hours when the plant is disabled for operation. Thus, this 

factor includes in the equation the effect of the operation cycle and the duration of the peak plant 

failures, reducing the number of hours of failure by the above-mentioned effects. 

There is a clear similarity between the factor  defined by the term (13) with the correction or 

adjustment factor modifying the base plant model in order to cater for the calculation of the 

reliability and availability parameters of the plant design, i.e. its failure can only start during the 

load time of the plant and not over the plant reserve shut-down time between the periods of need for 

operation (L13). The difference between them is that the modified base plant model does not 

include a presumption that any forced failure can arise from the start or during the need for 

operation of the plant, which leads to an understatement of the amount of that factor.  

The correction error is low if the plant repair time is relatively long compared to the plant average 

suspension time for the reserve (m>>X). Where the repair time is short, factor  is approaching the 

unit. The corrected number of contingency hours during the period of need for operation may be 

estimated as follows: 

SK SKcor   ( )                                                                      (16) 

The following problem presents the difficulty of assessing the impact of a change in the duty cycle 

on the risk of unavailability of the plant when its operation is needed. Indeed, the risks of 
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after which the probability of the plant unavailability for operation when 
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The correction error is low if the plant repair time is relatively long compared to the plant average 

suspension time for the reserve (m>>X). Where the repair time is short, factor  is approaching the 

unit. The corrected number of contingency hours during the period of need for operation may be 

estimated as follows: 

SK SKcor   ( )                                                                      (16) 

The following problem presents the difficulty of assessing the impact of a change in the duty cycle 

on the risk of unavailability of the plant when its operation is needed. Indeed, the risks of 

		 (15)

The x factor x for weighting is the contingency hours (SK) reflecting the 
cumulative number of contingencies occurring during the period of opera-
tion. Depending on the operating cycle and the duration of contingencies, 
this factor represents the contribution of hours of the plant failure when 
operation needed to the total number of hours when the plant is disabled 
for operation. Thus, this factor includes in the equation the effect of the 
operation cycle and the duration of the peak plant failures, reducing the 
number of hours of failure by the above-mentioned effects.

There is a clear similarity between the factor x defined by the term (13) 
with the correction or adjustment factor modifying the base plant model in 
order to cater for the calculation of the reliability and availability parameters 

of the plant design, i.e. its failure can only start during the load time of the 
plant and not over the plant reserve shut-down time between the periods 
of need for operation (L13). The difference between them is that the modifi-
ed base plant model does not include a presumption that any forced failure 
can arise from the start or during the need for operation of the plant, which 
leads to an understatement of the amount of that factor. 

The correction error is low if the plant repair time is relatively long compa-
red to the plant average suspension time for the reserve (m>>X). Where 
the repair time is short, factor x is approaching the unit. The corrected 
number of contingency hours during the period of need for operation may 
be estimated as follows:
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duration of contingencies, this factor represents the contribution of hours of the plant failure when 

operation needed to the total number of hours when the plant is disabled for operation. Thus, this 

factor includes in the equation the effect of the operation cycle and the duration of the peak plant 

failures, reducing the number of hours of failure by the above-mentioned effects. 

There is a clear similarity between the factor  defined by the term (13) with the correction or 

adjustment factor modifying the base plant model in order to cater for the calculation of the 

reliability and availability parameters of the plant design, i.e. its failure can only start during the 

load time of the plant and not over the plant reserve shut-down time between the periods of need for 

operation (L13). The difference between them is that the modified base plant model does not 

include a presumption that any forced failure can arise from the start or during the need for 

operation of the plant, which leads to an understatement of the amount of that factor.  

The correction error is low if the plant repair time is relatively long compared to the plant average 

suspension time for the reserve (m>>X). Where the repair time is short, factor  is approaching the 

unit. The corrected number of contingency hours during the period of need for operation may be 

estimated as follows: 
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The following problem presents the difficulty of assessing the impact of a change in the duty cycle 

on the risk of unavailability of the plant when its operation is needed. Indeed, the risks of 

				    (16)

The following problem presents the difficulty of assessing the impact of a 
change in the duty cycle on the risk of unavailability of the plant when its 
operation is needed. Indeed, the risks of unavailability of the plant are in 
fact chosen at random in one way if they are working on a weekly basis, 
compared to the cycle of service with daily start and shut-down. It is po-
ssible to solve the problem in two ways.

The first is that records and data the outages of the plant exposed to ope-
rational cycles corresponding to the expected type of use, and on the ba-
sis of them, determine the model’s parameters for the plant. Another way 
is to adapt the available statistical data to the plant’s new mode and the 
calculation of model parameters for these new conditions. The adjustment 
should in particular relate to intermediate to the failure, the probability of 
failure at the start-up and the mean repair time of the plant. By extrapola-
tion, account should be taken of the changes in the relative difficulties of 
the start and the load, the speed of the load changes and the urgency of 
the exits.

With the increasing number of plant covering the peak part oy the system 
load the need to determine as precisely as possible the parameters for 
the availability budget of each of these plants is also growing. Since in the 
first years of operation, i.e. in the case of new on-site plants, there is, as a 
general rule, insufficient ‘good’ data to determine the model parameters, 
it is then reasonable to apply the increased fault rates from the facility, i.e. 
the increased rate of failures. 

The exposed fur-state model in addition to the peak facility may also be 
used for the layout and analysis of intermittent work, that is, the base drive 
firing a longer perimeter of work and spare exclusion, significantly different 
from the operating cycle and the duration of the work at the peak opera-
tion. The distinction between intermittent work and working with a base 
charge is not always clear. The limits shall only determine the duration of 
the operation. In fact, according to the term (13), the value of the weight 
factor x  is higher and tends to unit as the duration of the need for the 
operation of the plant is in excess of the periods of spare exclusion and 
repair. In this case, the conditional probability determined by the phrase 
(10) is to aim for the ratio m/(m + g), which is the analytical equivalent 
of the contingency risk (FOR), subject to a long load condition. Thus, the 
conditional probability of the plant unavailability, provided that the need 
arises, becomes the same as the risk of the plant failure as the factor x  is 
approaching the unit.

In the four-state model, the frequency of the plant failure shall determine 
the product of the probability of unit failure when operation is needed (state 
“3”), i.e. P3, and the sum of the plant repair rate and the rate xx of the need 
for the drive termination.
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f P3 3  ( )                                                                         (17) 
				     (17)

This value corresponds to the product of the probability of the plant una-
vailability when is its operation is needed as defined by the term (14), the 
probability of the occurrence of the need for the operation (P2+ P3) and the 
rate of the plant shut-downs, whether due to the repair or the operation is 
no longer needed.

The frequency of occurrence of the operating state when operation is nee-
ded, i.e. state “2” in the peak load model, shall be equal to the product of 
the probability of this state and to the sum of the rate of the need for the 
drive termination and the plant failure rate:
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where: 

 T2  - the cumulative retention in the state “2”, i.e. (SP), 
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With that terms, based on data regarding operation statistics, the parameters of g and Y shall be 

determined. 

The transitions form the state “0” are possible only to the states “2” and “3”. The time period spent 

in the state “0” is determined as follows: 
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It is the sum of the frequency of transition from the state “2” to “0” and “3.” 
For a longer time period, the ratio between the two frequencies is equal to 

Mićo Klepo, Vladimir Mikuličić, Zdenko Šimić, Peak Plant Models in the Electric Power System Model of Reliability and Availability, Journal of Energy, 
vol. 69 Number 2 (2020), p. 24–36 
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27

the g/Y ratio, i.e. the number of transitions from the state “2” to the state 
”0” and from the state “2” to the state “3.”

Where more detailed data are known about the number of transitions 
between states, i.e. the residence times under the individual the states, 
then the modelling parameters may also be determined as follows.

The average duration of the state “2” is determined by the term
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where:

ΣT2- the cumulative retention in the state “2”, i.e. (SP),

N2,0,N2,3- the number of transitions from the state “2” to the state “0” and 
“3” respectively, for which:
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With that terms, based on data regarding operation statistics, the param-
eters of g and Y shall be determined.

The transitions form the state “0” are possible only to the states “2” and 
“3”. The time period spent in the state “0” is determined as follows:
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This value corresponds to the product of the probability of the plant unavailability when is its 

operation is needed as defined by the term (14), the probability of the occurrence of the need for the 

operation ( )P P2 3  and the rate of the plant shut-downs, whether due to the repair or the operation 

is no longer needed. 

The frequency of occurrence of the operating state when operation is needed, i.e. state “2” in the 

peak load model, shall be equal to the product of the probability of this state and to the sum of the 

rate of the need for the drive termination and the plant failure rate: 
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It is the sum of the frequency of transition from the state “2” to “0” and “3.” For a longer time 

period, the ratio between the two frequencies is equal to the g/Y ratio, i.e. the number of transitions 
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where:

ΣT0- the cumulative duration of the state “0”, i.e. (RH-SP),

N2,0,N2,3- the number of transitions from the state “0” to state “2” and “3” 
respectively,  for which:
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With that terms, based on data regarding operation statistics, the parameters Ps  and X shall be 

determined. The parameter m still remains. It is possible to determine it as follows. The plant failure 

frequency, whether or not its operation is needed (states “1” and “3”), is equal to the product of the  

sum of the probabilities of the states “1” and “3” and the transition rates from these states: 

f P P P P1 3 1 3 1 3, ( )                                                                   (25) 

Whereas the average duration of the failure to operate or to repair, notwithstanding the need for 

operation, is equivalent to an inverse of the repair frequency value, the following shall be valid: 
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where: 

  ( )T T1 3   - the cumulative time of failure, i.e. (SK), 

        (N1 + N3) - the total number of failures, i.e. the transitions to the states “1” and “3”. 

A specific problem introduces the partial failure of the peak load plant. In that case, three 

approaches may be followed. The first is that partial failures should be set aside, which can be done 

if those failures do not contribute significantly to the number and duration of the faults in the power 

system, that is to say, depending on the other installations of the power system. The second is when 

these failures have a major impact on the operation of the power system, when more complex 

models are needed, which is the subject of special treatment in the following chapters. Finally, in 

the third approach, the baseline of the four-state model is retained as a basis for the calculation of 

the indicator, but the failure risk is used in the modified form.  

Under partial contingency, it shall be assumed that the plant is loaded with a part load during the 

entire contingency period and the contingency hours shall be added to the full contingencies in the 

phrase (15), as the equivalent hours, resulting in an equivalent contingency risk of the facility; 
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where:

Σ(T1+T3)- the cumulative time of failure, i.e. (SK),

(N1 + N3) - the total number of failures, i.e. the transitions to the states “1” 
and “3”.

A specific problem introduces the partial failure of the peak load plant. In 
that case, three approaches may be followed. The first is that partial failu-
res should be set aside, which can be done if those failures do not con-
tribute significantly to the number and duration of the faults in the power 
system, that is to say, depending on the other installations of the power 
system. The second is when these failures have a major impact on the 
operation of the power system, when more complex models are needed, 
which is the subject of special treatment in the following chapters. Finally, 
in the third approach, the baseline of the four-state model is retained as a 
basis for the calculation of the indicator, but the failure risk is used in the 
modified form. 

Under partial contingency, it shall be assumed that the plant is loaded with 
a part load during the entire contingency period and the contingency hours 
shall be added to the full contingencies in the phrase (15), as the equivalent 
hours, resulting in an equivalent contingency risk of the facility;
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where:  

ekv(SK) - the hourly equivalent of the plant partial failure obtained as follows: 
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         i - the ordinal number of the partial load outage (i=1, 2,..., ), 

        Oi
isp - the part of the load outage during outage "i", 

        Omax  - the maximum load of the plant in the observed period, 

        SKi
isp  - the duration of partial contingency "i". 

As regards the exposed four-state peak load model (Figure 1), i.e. the main model of the peak load, 

it is also necessary to add the following. In the most general case, this model may also be used for 

inclusion in the calculation of the reliability and availability indicators of the wind farm production 

unit. In order to be able to use the model as the wind farm model, it is necessary to label the state 

“plant drive is not required” as the state “not sufficient wind to drive plant”, while the state “plant 

drive is required” to label as the state “sufficient wind to drive plant”. Adequate, the state “0” of the 

plant spare shut-down status and the state “1” of the condition of the plant failure when the plant is 

not required to drive, shall become the condition of the suspension or the condition of the failure 

condition in the weather conditions when there is no sufficient wind for the plant to drive. On the 

other hand, the state “2” of the plant when the plant is required to drive and the state “3” of the plant 

failure when the plant is being sought, become the operational status or the condition of the plant 

failure in the weather conditions when the wind is sufficient to propel the wind farm. The duration 

of the weather conditions where there is no sufficient wind for the wind farm to drive shall also 

include the duration of the very strong wind or storm weather during which the wind farm must be 

removed from the operation for protection purposes. Finally, in order to be able to use the model as 

a wind farm model the rate of occurrence of the need for drive ρ+ should be replaced by the rate of 

occurrence of weather conditions when wind is sufficient to propel (e.g. code ‘v’ – the rate of 

occurrence of sufficient wind time for the plant operation), while the rate of termination of the need 

for drive ρ- should be replaced by the rate of weather conditions when the wind is not sufficient or is 

too high to propel the wind farm, i.e. the wind farm is switched off due to a thunderstorm.  
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i - the ordinal number of the partial load outage (i=1, 2,..., π),

0i
izp- the part of the load outage during outage »i«,

0max- the maximum load of the plant in the observed period,

SKi
izp- the duration of partial contingency »i«.

As regards the exposed four-state peak load model (Figure 1), i.e. the main 
model of the peak load, it is also necessary to add the following. In the 
most general case, this model may also be used for inclusion in the calcu-
lation of the reliability and availability indicators of the wind farm produc-
tion unit. In order to be able to use the model as the wind farm model, it is 
necessary to label the state “plant drive is not required” as the state “not 
sufficient wind to drive plant”, while the state “plant drive is required” to 
label as the state “sufficient wind to drive plant”. Adequate, the state “0” 
of the plant spare shut-down status and the state “1” of the condition of 
the plant failure when the plant is not required to drive, shall become the 
condition of the suspension or the condition of the failure condition in the 
weather conditions when there is no sufficient wind for the plant to drive. 
On the other hand, the state “2” of the plant when the plant is required to 
drive and the state “3” of the plant failure when the plant is being sought, 
become the operational status or the condition of the plant failure in the 
weather conditions when the wind is sufficient to propel the wind farm. The 
duration of the weather conditions where there is no sufficient wind for the 
wind farm to drive shall also include the duration of the very strong wind 
or storm weather during which the wind farm must be removed from the 
operation for protection purposes. Finally, in order to be able to use the 
model as a wind farm model the rate of occurrence of the need for drive 
ρ+ should be replaced by the rate of occurrence of weather conditions 
when wind is sufficient to propel (e.g. code ‘v’ – the rate of occurrence of 
sufficient wind time for the plant operation), while the rate of termination of 
the need for drive ρ- should be replaced by the rate of weather conditions 
when the wind is not sufficient or is too high to propel the wind farm, i.e. 
the wind farm is switched off due to a thunderstorm. 

Examples are provided below of the application of the four-state peak load 
model to two peak plants, namely: the peak load plant A, whose work 
cycles are short, often entrances and exits from the operation, thus cover-
ing the highest parts of the load diagram of the power system (daily work 
cycle), and peak load plant B, whose work cycles last longer, thus covering 
the intermediate parts of the load diagram of the power system (weekly 
working cycle). 
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Tables 1.1 and 1.2 present for peak load plant A and peak load plant B the 
input data to calculate the input parameters and the model parameters of 
the peak generating units, the stationary state probabilities for the input 
parameters thus determined, and the other parameters and indicators as 
the results of the four-state model application, relevant for the reliability 
and availability patterns of the power systems while operational planning 
operations are taking place.

Table 1.1 - The four-state peak load plant model parameters, the stationary 
probabilities of states and the other indicators of the peak load plant A

Data for the calculation of the plant 
parameters and the parameters of the peak 
load model states 

Stationary state probabilities of the peak 
load plant

Other parameters and model indicators of the peak load plant operational 
conditions

g 714,3 P0 0,27020 P1+P3
0,09216

m 68,2 P1 0,01963 FOR, term (9) 0,12628

X 34,7 P2 0,63764 FORp, term (10) 0,10448

Y 84,9 P3 0,07253 P2 (EST), term (11) 0,60901

X+Y 119,6 P1+P3 (EST), term (12) 0,08871

u 7 ζ, (EST), term(13) 0,78705

ω 34 FORp, (EST), term (14) 0,10214

u+ω 41 FORp, (EST), term (15) 0,10286

NPS 3 f3
0,00192

NUP 48 f2
0,00840

Ps 0,05882 T2
75,930

SP 3.278,0 T0
84,962

SK 477,5 f1,3
0,00135

RH 4.905,0  

l 0,00140  

m 0,01466  

ρ+ 0,02884  

ρ- 0,01177    

Table 1.2 - The four-state peak load plant model parameters, the stationary 
probabilities of states and the other indicators of the peak load plant B

Data for the calculation of the plant 
parameters and the parameters of the 
peak load model states 

Stationary state probabilities of the peak 
load plant

Other parameters and model indicators of the peak load plant operational 
conditions

g 714,3 P0 0,27020 P1+P3 0,09216
m 68,2 P1 0,01963 FOR, term (9) 0,12628
X 34,7 P2 0,63764 FORp, term (10) 0,10448
Y 84,9 P3 0,07253 P2 (EST), term (11) 0,60901

X+Y 119,6 P1+P3 (EST), term (12) 0,08871
u 7 ζ, (EST), term(13) 0,78705
ω 34 FORp, (EST), term (14) 0,10214

u+ω 41 FORp, (EST), term (15) 0,10286
NPS 3 f3 0,00192
NUP 48 f2 0,00840

Ps 0,05882 T2 75,930
SP 3.278,0 T0 84,962
SK 477,5 f1,3 0,00135
RH 4.905,0  
l 0,00140  

m 0,01466  

ρ+ 0,02884  

ρ- 0,01177  
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SIX-STATE (EXTENDED) MODEL OF 
PEAK LOAD UNIT
The six-state (extended) peak plant model is the modified four-state peak 
load plant model that distinguish the failure of the plant at the starting from 
the failure of the plant unit during the operation (Figure 2.1) [L9], [L10] and 
[L11]. The consequences of these failures are also different. Finally, it me-
ans that the way in which the plant failures are repaired are also diffe-
rent. For the four-state model data shall be collected on the durability of 
the repair time for all faults during the observation period that the repair 
frequency is calculated from the average value of these durations and the 
number of corresponding transitions. However, the number and type of 
the failures of the plant are particularly dependent on the plant operating 
cycle, in particular when the performance is at an early occurrence at a re-
latively high probability. On the other hand, for this type of failure, they are 
linked to relatively shorter periods of contingency, i.e. to repair, compare 
to the malfunctions occurring during the longer period of operation. The 
duty cycle inevitably has an impact on total, which means also the average 
repair rate of the power plant. As a result, this problem is addressed by an 
explicit distinction between the failures during start-up and failures during 
operation of the plant, and the introduction of two separate repair rates, 
one for the repairs following failure events at the starting and other repairs 
after the failures occurred during operation.

Figure 2.1 – The six-state (extended) model of the peak load plant

According to Figure 2.1, the Markov process, which describes the six-sta-
te model of the peak load plant, describes the following system of linear 
differential equations:

     	
   	
          
(29)

The initial conditions are:

	  (30)

A stationary solution is being sought, i.e. the solution when it is
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The initial conditions are: 

P P P P P P0 1 2 3 4 50 1 0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( )      .                                (30) 

A stationary solution is being sought, i.e. the solution when it is 

P t nn
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 ( ) ; , , , , , .0 0 1 2 3 4 5                                                            (31) 

Under conditions (31), the system (29) takes a new form  

0
0
0 1
0
0
0

0 1 2 4

1 3

0 2 3 5

1 2 3

4 5

0 4 5

    
   
     
   
   
   

 

 

 

 

 

  

   
  

    
   

  
   

P t P t P t P t
P t P t

P P t P t P t P t
P t P t P t

P t P t
P P t P t P

r s

r

s r s

r

s

s s

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )t

                       (32) 

The equation of identity is: 

P P P P P P0 1 2 3 4 5 1                                                                   (33) 

The stationary solution, i.e. stationary state probabilities are: 
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Under conditions (31), the system (29) takes a new form 
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The probability of the plant failure according to the six-state model is de-
termined by the sum of the probabilities finding in the failure states, that is, 
states »1«, »3«, »4«, and »5«, hence:
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The probability of the plant failure according to the six-state model is determined by the sum of the 
probabilities finding in the failure states, that is, states "1", "3", "4", and "5", hence: 
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In stationary conditions, the frequency of occurrence of the failure condition shall be: 
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The mean plant repair rate shall be determined by the ratio of the failure frequency and failure 
probability: 
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However, the mean plant repair rate expressed in such way is insensitive to the differences between 

fault types, i.e. the differences between the faults occurring at the starting and the fault conditions 

during the operation are not recognised, nor the differences between the conditions of repair of the 

plant after different failures. The mean plant repair rate by default (37) shall be equal to the plant 

repair rate of the four-state peak load plant model, which in accordance with the above ‘hides’ the 

different transitions from the states “1” and “4” to the state “0” or from the states “3” and “5” 

through the state “2” to the state “0”. 

For the sake of simplicity, it is possible to use the main peak load plant model with the four states as 

the six-state model, but subject to separate operating statistics on the rates of the transition for every 

single state when the plant is ready for operation, i.e. the states “0” or ‘2’, depending on the 

 				    (35)
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occurring during the longer period of operation. The duty cycle inevitably has an impact on total, 
which means also the average repair rate of the power plant. As a result, this problem is addressed 
by an explicit distinction between the failures during start-up and failures during operation of the 
plant, and the introduction of two separate repair rates, one for the repairs following failure events at 
the starting and other repairs after the failures occurred during operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

 Legend (Figure 2.1): 

  “0” - the state of the plant reserve shut-down, 

  “1”- the state of the plant failure when drive is not being required, but after the failure that 

occurred during operation, 
  “2” - the state of the plant drive when drive is being required, 

  “3” - the state of the plant repair when drive is being required, but after the failure that occurred 

during operation, 

  “4” – the state of the plant when operation is not being required, but after the failure that 

occurred during start-up, 

  “5” - the state of the plant repair when operation is being required, but after the failure that 

occurred during start-up,  

    - the plant failure rate during operation, 

   r  - the plant repair rate after failure occurred during operation, 

   S  - the plant repair rate after failure occurred during start-up, 

    - the rate of occurrence of the need for the drive, 

    - the rate of termination of the need for the drive, 

  PS  - the probability of the plant failure during the start-up. 
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Figure 2.1 – The six-state (extended) model of the peak load plant 

According to Figure 2.1, the Markov process, which describes the six-state model of the peak load 

plant, describes the following system of linear differential equations: 
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A stationary solution is being sought, i.e. the solution when it is 

P t nn



 ( ) ; , , , , , .0 0 1 2 3 4 5                                                            (31) 

Under conditions (31), the system (29) takes a new form  

0
0
0 1
0
0
0

0 1 2 4

1 3

0 2 3 5

1 2 3

4 5

0 4 5

    
   
     
   
   
   

 

 

 

 

 

  

   
  

    
   

  
   

P t P t P t P t
P t P t

P P t P t P t P t
P t P t P t

P t P t
P P t P t P

r s

r

s r s

r

s

s s

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )t

                       (32) 

The equation of identity is: 

P P P P P P0 1 2 3 4 5 1                                                                   (33) 

The stationary solution, i.e. stationary state probabilities are: 

                                                                                                                                                     

                                                                           15 

Figure 2.1 – The six-state (extended) model of the peak load plant 

According to Figure 2.1, the Markov process, which describes the six-state model of the peak load 

plant, describes the following system of linear differential equations: 

 

P t P t P t P t P t

P t P t P t

P t P P t P t P t P t

P t P t P t P t

P t P t P t

P

r s

r

s r s

r

s



 


 


 


 


 


    

   

     

   

   

0 0 1 2 4

1 1 3

2 0 2 3 5

3 1 2 3

4 4 5

5

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(

   

  

    

   

  

t P P t P t P ts s) ( ) ( ) ( ) ( )        0 4 5

                   (29) 

The initial conditions are: 

P P P P P P0 1 2 3 4 50 1 0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( )      .                                (30) 

A stationary solution is being sought, i.e. the solution when it is 

P t nn



 ( ) ; , , , , , .0 0 1 2 3 4 5                                                            (31) 

Under conditions (31), the system (29) takes a new form  

0
0
0 1
0
0
0

0 1 2 4

1 3

0 2 3 5

1 2 3

4 5

0 4 5

    
   
     
   
   
   

 

 

 

 

 

  

   
  

    
   

  
   

P t P t P t P t
P t P t

P P t P t P t P t
P t P t P t

P t P t
P P t P t P

r s

r

s r s

r

s

s s

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )t

                       (32) 

The equation of identity is: 

P P P P P P0 1 2 3 4 5 1                                                                   (33) 

The stationary solution, i.e. stationary state probabilities are: 

                                                                                                                                                     

                                                                           15 

Figure 2.1 – The six-state (extended) model of the peak load plant 

According to Figure 2.1, the Markov process, which describes the six-state model of the peak load 

plant, describes the following system of linear differential equations: 

 

P t P t P t P t P t

P t P t P t

P t P P t P t P t P t

P t P t P t P t

P t P t P t

P

r s

r

s r s

r

s



 


 


 


 


 


    

   

     

   

   

0 0 1 2 4

1 1 3

2 0 2 3 5

3 1 2 3

4 4 5

5

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(

   

  

    

   

  

t P P t P t P ts s) ( ) ( ) ( ) ( )        0 4 5

                   (29) 

The initial conditions are: 

P P P P P P0 1 2 3 4 50 1 0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( )      .                                (30) 

A stationary solution is being sought, i.e. the solution when it is 

P t nn



 ( ) ; , , , , , .0 0 1 2 3 4 5                                                            (31) 

Under conditions (31), the system (29) takes a new form  

0
0
0 1
0
0
0

0 1 2 4

1 3

0 2 3 5

1 2 3

4 5

0 4 5

    
   
     
   
   
   

 

 

 

 

 

  

   
  

    
   

  
   

P t P t P t P t
P t P t

P P t P t P t P t
P t P t P t

P t P t
P P t P t P

r s

r

s r s

r

s

s s

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )t

                       (32) 

The equation of identity is: 

P P P P P P0 1 2 3 4 5 1                                                                   (33) 

The stationary solution, i.e. stationary state probabilities are: 
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The probability of the plant failure according to the six-state model is determined by the sum of the 
probabilities finding in the failure states, that is, states "1", "3", "4", and "5", hence: 

5431vark PPPPP +++=                                      (35) 

In stationary conditions, the frequency of occurrence of the failure condition shall be: 

f P P P Pk r r s svar    1 3 4 5                                                       (36) 

The mean plant repair rate shall be determined by the ratio of the failure frequency and failure 
probability: 


 

sred
r sP P P P

P P P P


  
  

( ) ( )1 3 4 5

1 3 4 5
                                                    (37) 

However, the mean plant repair rate expressed in such way is insensitive to the differences between 

fault types, i.e. the differences between the faults occurring at the starting and the fault conditions 

during the operation are not recognised, nor the differences between the conditions of repair of the 

plant after different failures. The mean plant repair rate by default (37) shall be equal to the plant 

repair rate of the four-state peak load plant model, which in accordance with the above ‘hides’ the 

different transitions from the states “1” and “4” to the state “0” or from the states “3” and “5” 

through the state “2” to the state “0”. 

For the sake of simplicity, it is possible to use the main peak load plant model with the four states as 

the six-state model, but subject to separate operating statistics on the rates of the transition for every 

single state when the plant is ready for operation, i.e. the states “0” or ‘2’, depending on the 
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However, the mean plant repair rate expressed in such way is insensitive 
to the differences between fault types, i.e. the differences between the 
faults occurring at the starting and the fault conditions during the operation 
are not recognised, nor the differences between the conditions of repair 
of the plant after different failures. The mean plant repair rate by default 
(37) shall be equal to the plant repair rate of the four-state peak load plant 
model, which in accordance with the above ‘hides’ the different transitions 
from the states “1” and “4” to the state “0” or from the states “3” and “5” 
through the state “2” to the state “0”.

For the sake of simplicity, it is possible to use the main peak load plant 
model with the four states as the six-state model, but subject to separate 
operating statistics on the rates of the transition for every single state when 
the plant is ready for operation, i.e. the states “0” or ‘2’, depending on the 
operating cycle conditions, in particular whether the failure occurred at the 
starting or during the operation.

Model parameters shall be calculated in a similar manner from the opera-
tion statistics as in the baseline of the four state model, but separate sta-
tistics of the number and duration of the failures shall be introduced after 
the start-up and operational failures, of course, depending on whether the 
repairs are performed during or after the end of the operation.

The extended peak load plant model, with an adequate change, as stated 
for the main model of the peak load plant, can be used as a model for 
inclusion in the calculation of the reliability and availability indicators of the 
wind farm production unit.

It is necessary that special attention be given to the failures during the start 
of the peak load plant, which means introduction of the distinctive para-
meters for the probability of failure of the peak production unit at the start 
and the appropriate rate of repair of the plant after the start-up failures. In 
fact, the repair rate of the plant from the main model of the peak load plant 
μ in the expanded peak load plant model is “divided” into two parameters: 
μr – the peak plant repair rate after failure occurred during operation, and 
μs – the peak load plant repair rate after failure occurred during start-up. It 
is necessary to take account of the conditionality and the compatibility of 
these three parameters. 

Tables 2.1 and 2.2 present the input parameters for application of the 
extended, the peak load stationary state probabilities so specified input 
parameters, and other parameters and model indicators of the peak load 
plant operational conditions for the peak load plants A and B, whose 
structures, characteristics and input data for the calculation of the model 
parameters are identical to those given in Tables 1.1 and 1.2. The changes 
in relation to the model parameters listed in Tables 1.1 and 1.2 constitute 
the differences between the average duration of the repairs, that is, the 
average duration of failures on the occurrence of the failures at the star-
ting and the occurrence of the failures during the operation, at the end 
the resulting differentiation of the corresponding repair rates of the peak 
load plant. The model parameters for application of the six-state peak 
load plant model and the peak plant stationary probability of the states for 
the peak load plant A as results listed in Table 2.1 were obtained on the 
assumption that the mean peak load plant A repair rate after all failures in 
the phrase (37) is 0,07937. Thus, the mean value of the repair rate of the 
peak load plant A is equal to the repair rate of the same plant from the ba-
sic model as indicated in Table 1.1. Adequately, the model parameters for 
application of the six-state peak load plant model and the peak plant stati-
onary probability of the states for the peak load plant B as results listed in 
Table 2.1 were obtained on the assumption that the mean peak load plant 
B repair rate after all failures in the phrase (37) is 0,01466. Thus, the mean 
value of the repair rate of the peak load plant B is equal to the repair rate of 
the same plant from the basic model as indicated in Table 1.2. 

Table 2.1 - The six-state peak load plant model parameters, the stationary 
probabilities of states and the other indicators of the peak load plant A 

Data for the 
calculation of the 
plant parameters and 
the parameters of 
the peak load model 
states 

Stationary state 
probabilities of the 
peak load plant

Other parameters and model 
indicators of the peak load plant 
operational conditions

l 0,00329 P0 0,39638 Pkvar, term (35) 0,05029

μr 0,03981 P1 0,01637 fkvar, term (36) 0,00399

μs 0,47619 P2 0,55333 μsred, term (37) 0,07937

ρ+ 0,14706 P3 0,02936

ρ- 0,10417 P4 0,00065

Ps 0,03191 P5 0,00391

Table 2.2 - The six-state peak load plant model parameters, the stationary 
probabilities of states and the other indicators of the peak load plant B

Data for the 
calculation of the 
plant parameters and 
the parameters of 
the peak load model 
states 

Stationary state 
probabilities of the 
peak load plant

Other parameters and model 
indicators of the peak load plant 
operational conditions

l 0,00140 P0 0,26644 Pkvar, term (35) 0,09785

μr 0,01130 P1 0,01787 fkvar, term (36) 0,00143

μs 0,02857 P2 0,63571 μsred, term (37) 0,01466

ρ+ 0,02884 P3 0,06092

ρ- 0,01177 P4 0,00324

Ps 0,05882 P5 0,01582

The application of the six-state peak load plant or the extended peak load 
plant model and the calculation of the stationary state probabilities of the 
peak load plant under this model are, in particular, sensitive to the ratio of 
the respective parameters with which the peak unit design incorporates 
features of the peak plant in relation to the failures at the starting and the 
failure conditions during the operation. In the case of peak load plant A, 
whose work cycles are short, often entering and leaving the drive, that is 
to say covering the highest parts of the power system’s load diagram, the 
application of the extended peak load model is justified for the average 
time of repair of the plant after the failure during the starting which often 
do not last more than a few hours. In the case of the peak load plant B, 
whose work cycles last longer, that is to say covering the intermediate 
parts of the power system’s load diagram, the application of the extended 
peak load model is justified for the average time of repair of the peak load 
plant after the failure during the starting which can last as long as tens of 
hours. Of course, in both cases, it is appropriate to take into account and 
correct the ratios of the peak load plants duration of repair after the failures 
during the operation and the failures at the starting. Any previous base on 
the assumption that the average repair time of the peak load plant after 
failure occurred during operation is significantly longer than its average 
repair time after failure at the starting. 

Figures 2.2 and 2.3 show the results of the analysis of the corresponding 
repair times and the plant repair rates after the failures occurred at the 
starting and during operation, the average duration of the repairs and the 
mean repair rates on the occurrence of the all plant failures for the peak 
load plant A and the peak load plant B respectively.
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Figure 2.2 - Relationship between the repair time and repair rate, the average 
duration of repairs and mean repair rate for unit failures occurred during start-ups 
and operation – peak load plant A

Figure 2.3 - Relationship between the repair time and repair rate, the average 
duration of repairs and mean repair rate for unit failures occurred during start-ups 
and operation – peak load plant B
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Figure 2.3 - Relationship between the repair time and repair rate, the average duration of repairs 
and mean repair rate for unit failures occurred during start-ups and operation – peak load plant B 

4 SEVEN-STATE PEAK LOAD PLANT MODEL – MODEL OF PEAK LOAD PLANT 

WITH POSTPONABLE OUTAGES 

The basis of the seven-state peak load plant model is once again the four state peak load plant model 

which includes some plant states that reflect the possibilities that some plant component failures 

would not cause outages of the plant during its operation, that is, in spite of the component failures 

the plant remains in operation or it is possible to postpone or delay its disconnection from the power 

system. When the plant will be shut down for the repair, depends of the degree of postponability. 

The seven-state peak load plant model as an extension includes the various postponable plant outage 

categories (Figure 3.1). It is obvious that greater number of the peak load plant states could be 

added in the basic model, each representing the separated plant postponable outage category [L9], 

[L10] and [L11]. At the end it is likely that some component failures could cause the plant failures 

that are postponable for a relatively long period of time, beyond the weekend or even longer, 

enabling the plant to be repaired during the period when the plant operation would not be required. 

This is a reason why treatment of the data and the model calibration in this case should be very 

precise.     
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SEVEN-STATE PEAK LOAD PLANT 
MODEL – MODEL OF PEAK LOAD 
PLANT WITH POSTPONABLE OUTAGES
The basis of the seven-state peak load plant model is once again the four 
state peak load plant model which includes some plant states that reflect 
the possibilities that some plant component failures would not cause out-
ages of the plant during its operation, that is, in spite of the component fail-
ures the plant remains in operation or it is possible to postpone or delay its 
disconnection from the power system. When the plant will be shut down 
for the repair, depends of the degree of postponability. The seven-state 
peak load plant model as an extension includes the various postponable 
plant outage categories (Figure 3.1). It is obvious that greater number of 
the peak load plant states could be added in the basic model, each repre-
senting the separated plant postponable outage category [L9], [L10] and 
[L11]. At the end it is likely that some component failures could cause the 
plant failures that are postponable for a relatively long period of time, be-
yond the weekend or even longer, enabling the plant to be repaired during 
the period when the plant operation would not be required. This is a reason 
why treatment of the data and the model calibration in this case should be 
very precise.    

Figure 3.1 - The seven-state peak load plant model - model with the postponable 
outage

The peak unit model with the possible postponement or delay in the out-
age or exit shall reflect the conditions when, in some cases, after the fail-
ure the plant for some period of time remains in operation because of the 
system needs or the other reasons. That time may be relatively long, giving 
the opportunity to preserve the integrity of the system by including the 
spare capacities or otherwise maintain the integrity of the system. On the 
other hand, that time must not be too long to avoid even much seriously 
failures. In some cases, especially in the case of the outages of the plant 
that have been delayed over the weekend, the failure of the plant do not in 
fact appear at all. It is very likely that the planned exit from the drive which 
has delayed for a relatively long period of time can be removed during the 
period in which the operation of the plant is not required. The severity of 
the failure is the primary criterion of the drive or removal of the plant from 
the operation after the failure, which may essentially be classified in four 
categories, namely [L9]: 

(a) immediate exit of the plant from the operation,

(b) exit of the plant from the operation postponed for the period of up to 
six hours,

(c) exit of the plant from the operation postponed from the six-hour period 
to the weekend, and 
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Figure 3.1 - The seven-state peak load plant model - model with the postponable outage 
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Legend (Figure 3.1): 

  “0” - the state of the plant reserve shutdown, 

  “1” - the state of the plant failure when drive is not being required, 

  “2” - the state of the plant drive when drive is being required, 

  “3” - the urgent unpostponable shutdown (outage) of the plant after the failure of class i=1, 

“4” - the postponable plant shutdown (e.g. until six o'clock) after the failure of class i=2,  

“5” - the postponable plant shutdown (e.g. until the weekend) after the failure of class i=3, 

“6”- the postponable plant shutdown (e.g. until the several days) after the plant failure of class i=4, 

    - the mean rate of the all unplanned plant failures, 

    - the plant repair rate, 

    - the rate of occurrence of the need for the drive, 

    - the rate of termination of the need for the drive, 

  PS  - the probability of the plant failure during the start-up, 

 Ci ,i=1,2,3,4 - the probability of the plant failure of class "i" during the drive, 

 Tpi ,i=1,2,3,4 – the mean time of the postponability after the failure of class "i". 

Mićo Klepo, Vladimir Mikuličić, Zdenko Šimić, Peak Plant Models in the Electric Power System Model of Reliability and Availability, Journal of Energy, 
vol. 69 Number 2 (2020), p. 24–36 
https://doi.org/10.37798/202069230



33

(d) exits of the plant from operation postponed over the weekend.

Of course, for the peak load plants whose work cycles are short, thus co-
vering the highest parts of the power system load diagram, the possibility 
to delay exit is much shorter, i.e. the maximum delay time is no longer than 
the few hours. Of course, in such conditions the calculation of the peak 
load plant model parameters is much more demanding. 

As regards postponability the four-state peak load plant model, the plant failure rate 
l in the general aspect shall include the possibility to delay the outage, and thus the 
occurrence of the unplanned outages and any part failures of the respective class, i.e. 
the probability that the malfunction will occur during the operation shall be of the 
class 1, 2 or 3. In fact, it is more accurate to say that the failure rate in the four states 
model represents the medium frequency of the failure which cannot be postponed 
over the weekend or at the time when the peak plant is not required to operate.

The influence of the explicit modelling capability of the exit from the operation is 
of the utmost importance for plants operating close to the base part of the power 
system load curve. In the case of plants with the very short operating cycles, the 
postponement of exit is of less importance, as that plants terminate their operation 
before the end of the shortest postponable time period. In many cases the effect 
of the postponement to the weekend will be lost. This is way the risk of the plant 
failure in some cases shall be reduced.

According to Figure 3.1, the Markov process, which describes the seven-state peak 
load plant model - the peak load plant model with postponable outages, describes 
the following system of linear differential equationsl:

	

(38)
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The initial conditions are: 

P P P P P P P0 1 2 3 4 5 60 1 0 0 0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )       .                     (39) 

A stationary solution is being sought, i.e. the solution when it is  
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The equation of identity is: 

P P P P P P P0 1 2 3 4 5 6 1                                                        (42) 

The stationary solution, i.e. the stationary state probabilities are: 
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The initial conditions are: 

P P P P P P P0 1 2 3 4 5 60 1 0 0 0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )       .                     (39) 

A stationary solution is being sought, i.e. the solution when it is  

P t nn



 ( ) ; , , , , , , .0 0 1 2 3 4 5 6                                                        (40) 

Under conditions (40), the system (38) takes the form of: 
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The equation of identity is: 

P P P P P P P0 1 2 3 4 5 6 1                                                        (42) 

The stationary solution, i.e. the stationary state probabilities are: 

				            (42)

The stationary solution, i.e. the stationary state probabilities are:

	

(43)

where:

						      (44)	

In contrast to the terms for the stationary state probabilities of the main 
four-state peak load plant model, i.e. P0, P1, P2 and P3, in the corresponding 
terms using the seven-state model, i.e., P0, P1, P2 and P3

*, the plant failure 
rate λ is further multiplied by the term (mA+C), i.e. (mA+1). The failure rate of 
the plant in the four-state plant model may be taken with an equivalent size 
of multiplying the value of the seven-state model, and vice versa.

On the other hand, term P3 is the sum of the probabilities of different de-
gree of the plant failures, i.e. the sum of the postponable outage states »3,« 
»4,« »5,« and »6,« hence
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On the other hand, term P3
  is the sum of the probabilities of different degree of the plant failures, 

i.e. the sum of the postponable outage states "3," "4," "5," and "6," hence 
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where:  

∆ - as in the phrase (44). 

then the term for the probability of the state "3", i.e. the state the immediate exit after the failure 

class i=1 may be written in the following format: 
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where: 

∆ - as in the phrase (44). 

The probability of the plant failure in the four-state model can be considered equivalent to the sum 

of the different degrees of the outage delay in the modelling of the contingencies with the seven-

state model. This means that the additional operation conditions of the peak plant which is explicitly 

delayed by the outages can be seen as an "expansion" of the states "3" in four-state model. When 

certain parameters Tpi; i=2,3,4 and  , i.e. the mean time for postponable outage of the plant after 

the failure of class “i” and the rate of termination of the need for the drive, are known, it can easily 

be observed that the relationship of the probability ratio of the sate "3" (the state for which the 

failure causes the emergency outage of the plant) and the states "4," "5," and "6" determines only the 

probability of the failure of the defined class of the failure "i", i.e. C ii ; , , , 12 3 4. 

The operation statistics shall correspond, in essence, to the operational statistics of the main four-

state peak load plant model, with the addition of the above parameters, which is in effect the state 

"3" in the base model, on a number of situations characterised by the probability of occurrence and 

times of duration. 

Tables 3.1 and 3.2 present for the peak load plant A and the peak load plant B the input data for 

calculating the parameters of the peak plant model operational states and the possible postponement 

of exit from the drive, the stationary probability of these peak load plant states for the input 
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where: 

∆ - as in the phrase (44). 
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of exit from the drive, the stationary probability of these peak load plant states for the input 
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where:

∆ - as in the phrase (44).

The probability of the plant failure in the four-state model can be conside-
red equivalent to the sum of the different degrees of the outage delay in 
the modelling of the contingencies with the seven-state model. This means 
that the additional operation conditions of the peak plant which is explicitly 
delayed by the outages can be seen as an »expansion« of the states »3« 
in four-state model. When certain parameters Tpi; i=2,3,4 and ρ_, i.e. the 
mean time for postponable outage of the plant after the failure of class “i” 
and the rate of termination of the need for the drive, are known, it can easily 
be observed that the relationship of the probability ratio of the sate »3« (the 
state for which the failure causes the emergency outage of the plant) and 
the states »4,« »5,« and »6« determines only the probability of the failure of 
the defined class of the failure »i«, i.e. Ci ; i=1,2,3,4. 

The operation statistics shall correspond, in essence, to the operational stati-
stics of the main four-state peak load plant model, with the addition of the above 
parameters, which is in effect the state »3« in the base model, on a number of 
situations characterised by the probability of occurrence and times of duration.
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The initial conditions are: 

P P P P P P P0 1 2 3 4 5 60 1 0 0 0 0 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )       .                     (39) 

A stationary solution is being sought, i.e. the solution when it is  

P t nn



 ( ) ; , , , , , , .0 0 1 2 3 4 5 6                                                        (40) 

Under conditions (40), the system (38) takes the form of: 
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The equation of identity is: 

P P P P P P P0 1 2 3 4 5 6 1                                                        (42) 

The stationary solution, i.e. the stationary state probabilities are: 
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The initial conditions are: 
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The equation of identity is: 

P P P P P P P0 1 2 3 4 5 6 1                                                        (42) 

The stationary solution, i.e. the stationary state probabilities are: 
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In contrast to the terms for the stationary state probabilities of the main four-state peak load plant 

model, i.e. P0, P1, P2 and P3, in the corresponding terms using the seven-state model, i.e., P0, P1, P2 

and P3
*, the plant failure rate  is further multiplied by the term (A+C), i.e. (A+1). The failure 

rate of the plant in the four-state plant model may be taken with an equivalent size of multiplying 

the value of the seven-state model, and vice versa. 
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In contrast to the terms for the stationary state probabilities of the main four-state peak load plant 

model, i.e. P0, P1, P2 and P3, in the corresponding terms using the seven-state model, i.e., P0, P1, P2 

and P3
*, the plant failure rate  is further multiplied by the term (A+C), i.e. (A+1). The failure 

rate of the plant in the four-state plant model may be taken with an equivalent size of multiplying 

the value of the seven-state model, and vice versa. 
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Tables 3.1 and 3.2 present for the peak load plant A and the peak load 
plant B the input data for calculating the parameters of the peak plant 
model operational states and the possible postponement of exit from the 
drive, the stationary probability of these peak load plant states for the input 
parameters so defined and the other parameters of the seven-state peak 
model of the peak load plants A and B. The change in relation to the model 
parameters listed in Tables 1.1 and 1.2 constitutes a distinction between 
different categories of the delay of exit of the completed plant. 

Table 3.1 – The seven-state peak load plant model parameters, the stationary 
probabilities of states and the other indicators of the peak load plant A

Table 3.2 – The six-state peak load plant model parameters, the stationary probabili-
ties of states and the other indicators of the peak load plant B

Also with regard to the application of the peak load plant model with the 
possible delay in the contingency or exit from the operation the model 
input parameters and the stationary probabilities of the peak plant states 
are determined by the location and operating mode of the generation plant 
in the power system. However, as this is not a significant conditionality, 
the choice of the averaging periods after different failure classes during 
operation of the peak plant is not limited in advance. However, it is ap-
propriate to adapt it to the operational requirements placed on a specific 
peak power plant, in particular to bring it into line with the corresponding 
operating cycles of the peak power plant.
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parameters so defined and the other parameters of the seven-state peak model of the peak load 

plants A and B. The change in relation to the model parameters listed in Tables 1.1 and 1.2 

constitutes a distinction between different categories of the delay of exit of the completed plant.  

Table 3.1 – The seven-state peak load plant model parameters, the stationary probabilities of states 

and the other indicators of the peak load plant A 

Data for the calculation of the plant 
parameters and the parameters of 

the peak load model states  

Stationary state 
probabilities of the peak 

load plant 

Other parameters and model indicators 
of the peak load plant operational 

conditions 
 0,00329 P0 0,39916 P3*, term (45) 0,03366 
 0,07937 P1 0,01547 P3, term (46) 0,03103 
ρ+ 0,14706 P2 0,55171    
ρ- 0,10417 P3 0,03100    
Ps 0,03191 P4 0,00023    
C1 0,34000 P5 0,00098    
C2 0,27000 P6 0,00145    
C3 0,21000      
C4 0,18000       
Tp2 0,50      
Tp3 3,50      
Tp4 8,00       
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Table 3.2 – The six-state peak load plant model parameters, the stationary probabilities of states and 

the other indicators of the peak load plant B 

Data for the calculation of the plant 
parameters and the parameters of 

the peak load model states  

Stationary state 
probabilities of the peak 

load plant 

Other parameters and model indicators 
of the peak load plant operational 

conditions 

 0,00140 P0 0,26864 P3*,  term (45) 0,07831 

 0,01466 P1 0,02116 P3, term (46) 0,07037 
ρ+ 0,02884 P2 0,63189 

 
  

ρ- 0,01177 P3 0,07027 
 

  
Ps 0,05882 P4 0,00113 

 
  

C1 0,34000 P5 0,00263 
 

  
C2 0,27000 P6 0,00429 

 
  

C3 0,21000     
 

  
C4 0,18000         
Tp2 5,00     

 
  

Tp3 17,00     
 

  
Tp4 38,00         

Also with regard to the application of the peak load plant model with the possible delay in the 

contingency or exit from the operation the model input parameters and the stationary probabilities of 

the peak plant states are determined by the location and operating mode of the generation plant in 

the power system. However, as this is not a significant conditionality, the choice of the averaging 

periods after different failure classes during operation of the peak plant is not limited in advance. 

However, it is appropriate to adapt it to the operational requirements placed on a specific peak 

power plant, in particular to bring it into line with the corresponding operating cycles of the peak 

power plant. 

Finally, Figures 3.2 and 3.3 show the stationary state probabilities of the peak load plant A and the 

peak load plant B respectively, calculated according to the basic four state peak load model, the six-

state peak load model (extended) and the seven-state peak load model with the possible delay in 

exiting the plant from drive. 
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Finally, Figures 3.2 and 3.3 show the stationary state probabilities of the 
peak load plant A and the peak load plant B respectively, calculated ac-
cording to the basic four state peak load model, the six-state peak load 
model (extended) and the seven-state peak load model with the possible 
delay in exiting the plant from drive.

Figure 3.2 – The stationary state probabilities of the peak load plant A in the peak 
plant models 

Figure 3.3 – The stationary state probabilities of the peak load plant B in the peak 
plant models
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CONCLUSION
The peak load plant models have been developed and exposed to calcu-
late the reliability and availability parameters and indicators that the peak 
generating plants include in the reliability and availability patterns of the 
power systems when operating schedules. The developed models, hence 
the associated reliability and availability indicators are dictated by the 
technical and energy characteristics of the plants that cover the peak load 
curve, i.e. the peak part of the power system load profile, but they also 
include and reflect the specific conditions and requirements that can be 
installed in the facilities or from the operation on such facilities in view of 
the dynamics resulting from their location and role in covering the load and 
the consumption of the power system. In particular, through the separate 

different models for the calculation of the parameters and indicators of 
reliability and availability of peak load plants, they include the possibility 
of explicit differentiating between the failures at the start and during the 
operation, which are usually different in terms of the severity of the effects, 
including the duration of the repairs, and the possibility to delay the out-
age or removal from the drive through several categories of the peak plant 
outage deferral.

Each of the expose peak load plant model was applied on the peak load 
plants with the different operating cycle durations and operating require-
ments, the model parameters and other modelling parameters and indica-
tors have been calculated, demonstrating the applicability of the peak load 
plant models.

REFERENCES [1] MIKULIČIĆ, V., Matematički mo-
deli pouzdanosti i raspoloživosti 
u elektroenergetskom sustavu, 
Doktorska disertacija, Sveuči-
lište u Zagrebu, Elektrotehnički 
fakultet, Zagreb, 1981.

[2] MIKULIČIĆ, V., Matematički 
model pouzdanosti kom-
ponente, Elektrotehnika 
EKTTBV24(1981)1, 1981.

[3] JÖZSA, L., Primjena metode po-
uzdanosti u izgradnji proizvod-
nih kapaciteta u sustavu hidro 
i temoelektrana, Elektrotehnika 
EKTTBV24, 1981.

[4] Studie Systemzuverlässigkeit, 
Institut für Elektrische Anlagen 
und Energiewirtschaft, R.W.T.H. 
ACHEN,1982

[5] BILLINTON, R., ALLAN, R. N., 
Reliability Evaluation of Power 
Systems, New York, 1984

[6] JÖZSA, L., Analitički model pouz-
danosti akumulacijskih hidroe-
lektrana, I i II dio, Elektrotehnika 
ELTHB2 28, 1985.

[7] BILLINTON, R., ALLAN, R. N., 
Reliability Assessment of Large 
Electric Power Systems, Kluwer 
Academic Publishers, Boston, 
1988

[8] INVERNIZZI, A., MANZONI, G., 
RIVOIRO, A., Probabilistic Si-
mulation of Generating System 
Operation Including Seasonal 
Hydro Reservoirs and Pumped-
Storage Plants, Electric Power 
& Energy Systems, Vol. 10, No. 
1, 1988

 [9] SOETHE J.R., PATTON, A. D., A 
Comparison of Alternative Ge-
nerating Unit Reliability Models, 
IEEE Transactions on Power 
Systems, Vol. 4, No. 1, February 
1989 , 108-114.

[10] BILLINTON, R., LI, W., Reliability 
Assessment of Electric Power 
Systems Using Monte Carlo 
Methods, New York, 1994

[11] KLEPO, M., Pouzdanost i raspo-
loživost elektroenergetskog su-
stava pri operativnim planiranji-
ma rada, Doktorska disertacija, 
Sveučilište u Zagrebu, Fakultet 
elektrotehnike i računarstva, Za-
greb, 1996.

[12] KLEPO, M., Model neizvjesnosti 
pojave opterećenja u modelu 
pouzdanosti i raspoloživosti 
elektroenergetskog sustava, 
Energija, god.46(1997), br. 3.

[13] KLEPO, M., Modeli proizvodnih 
jedinica u modelu pouzdanosti 
i raspoloživosti elektroenerget-
skog sustava – model bazne 
jedinice, Energija, god.46(1997), 
br. 4.

[14] KLEPO, M., MIKULIČIĆ, V., 
ŠIMIĆ, Z., Model crpno-aku-
mulacijske (reverzibilne) hidroe-
lektrane u modelu pouzdanosti 
i raspoloživosti elektroenerget-
skog sustava, Energija, god. 
57(2008), br, 1., str. 38–63

[15] MIKULICIC, V., ŠIMIĆ, Z., Mo-
deli pouzdanosti, raspoloživosti 
i rizika u elektroenergetskom 
sustavu, I. dio, Udžbenik Sveu-
čilišta u Zagrebu, Svibanj 2008.

[16] M. Klepo, V. Mikuličić, Z. Šimić: 
Model proizvodne jedinice s 
uključenim uvjetima okoline u 
modelu pouzdanosti i raspolo-
živosti elektroenergetskog su-
stava; Energija, god. 58 (2009), 
br. 1; 26-55

Mićo Klepo, Vladimir Mikuličić, Zdenko Šimić, Peak Plant Models in the Electric Power System Model of Reliability and Availability, Journal of Energy, 
vol. 69 Number 2 (2020), p. 24–36 
https://doi.org/10.37798/202069230




