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SUMMARY
This paper gives an engineering review of the phenomenon of cavitation on hydraulic machines: turbines, pumps and ships propellers. The 
types of cavitation and its consequences are presented by the cabinet study of the results of relevant researches on models and real plants. 
In the special focus of this paper are the techniques of exploration of cavitation erosion: visual examination, measurements of pressures and 
vibrations and CFD methods.
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1. INTRODUCTION
Liquids usually have characteristic that change chemical phase from 
liquid phase to vapour phase. Phase changes are introduction in cavi-
tation phenomenon. Cavitation in cosmetic surgery is very positive 
phenomenon while for hydraulic turbomachinery is negative phenom-
enon. This is generally an undesirable phenomenon, which cannot be 
avoided, but scientists, engineers and businessmen can reduce its 
harmful effects by using various techniques, more or less successfully, 
by detecting cavitation. It is in focus of interest of this paper.
Cavitation as unwanted process appears at turbomachinery, and es-
pecially at water turbines pumps etc. Typical cavitation on hydraulic 
machines like water turbines and screw propeller are shown at Fig 1: 
a) Francis turbine – cavitation vortex [1], b) Ship propeller [2], c) Francis 
turbine - inlet cavitation [3], d) Francis turbine - outlet cavitation [3], f) 
pump cavitation, [4].

a) [1]

b) [2]

1 c) [3] 
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Figure 1. Cavitation on hydraulic machines 

The occurrence of cavitation depends directly on the hydraulic per-
formance of the machine, the rotor profile and material selection, and 
the mode of operation of the machine, percentage of dissolved gases, 
high temperatures and low viscosity, impurities in the form of particles 
and gas also have an effect on cavitation. [5] Also the geodetic height 
of machine is also very important.
Cavitation (Ger. kavitazion, franc. cavitation, lat. cavitas, cavus: hollow, 
cored) is cavity, empty space, [6].
Well, let’s start with, every engineering methodology is always based 
on a clear and unambiguous analysis of the occurrence, process, or 
generally speaking, of an observed problem. Cavitation can be ob-
served in two different ways as vaporous cavitation and as gaseous 
cavitation. For hydraulic machines vaporous cavitation is more fre-
quent than the gaseous cavitation.
What is cavitation? In hydrodynamics cavitation is a phenomenon in 
which rapid changes of pressure in a liquid lead to the formation of 
small vapour-filled cavities, in places where the pressure is relatively 
low. Cause of cavitation is mechanical. Using the Bernoulli equation 
the pressure is lower where fluid velocity is higher. If the pressure is 
lower than the vapour saturation pressure than the cavitation bubbles 
occurs, [6].
Saturation pressure pva depends on type of liquid and temperature. 
Water at 100°C saturate at pressure of pva = 101.325 kPa, but at room 
temperature of 20°C saturate at pressure of pva = 2.337 kPa.
When the cavitation bubble or cavity filled with the vapour phase 
reaches the area of static pressures higher than the evaporation pres-
sure pva and pressure in the liquid rises, vapour bubble implode (nega-
tive explosion), Figure. 2, [3].

Figure 2. Cavitation process [3]

Collapsing voids that implode near to a metal surface cause cyclic 
stress through repeated implosion. These results in surface fatigue of 
the metal causing a type of wear also called “cavitation”. 
Implosion effect is damaged surface and that is called cavitation ero-
sion. Small pores, cracks and holes form on the surface of the wall, 
which increase over time, not only because of the further mechanical 
destruction of the material by the implosions of the cavitation blad-
ders, but also by chemical processes that cause accelerated corrosion 
in the damaged places.
Likewise, these implosions near the wall, in addition to causing erosion 
of the material, also cause vibrations and noise. Therefore, the influ-
ence of cavitation, as a frequent occurrence on the blades of pumps 
and water turbines, on the wings of a ship’s propeller, in hydraulic 
systems, etc., tends to be reduced. For example, cavitation erosion 
of ship’s propellers is reduced by the use of more resistant materials, 
by selecting more favourable wing profiles, by installing systems that 
supply air to the bolt of the bolt, which reduces the rate of implosion, 
and more, [6].
 Cavitation can also be caused by the formation of bubbles that are not 
filled with liquid vapour, but with gases dissolved in the liquid. Namely, 
if the pressure in the liquid is higher than the evaporation pressure 
of pva but lower than the saturation pressure of the gases, gases are 
generated from the liquid by forming bubbles. When pressure increase 
again, bubbles disappear without erosion potential because com-
pressibility of gasses dims implosion and hydraulic stroke.
While the vapour cavitation is very rapid, it occurs in micro seconds, 
gaseous cavitation is slower, and accruement time depends on vol-
ume flow.

2. CAVITATION EFFECTS
Cavitation effects, from aspect of the undesirable hydrodynamic pro-
cess, can divide into mechanical and physical-chemical. This effects 
can be spotted because of changes of cavitation bubble dimension 
from first appear than to implosion, Table 1, [6,7].
Table 1. Effects of cavitation [6,7]

Physical - chemical Mechanical 

Pressure and temperature changes) Cavitation noise

Sonochemical processes Attenuation of flow caused by forming of 
vapour bubbles

Sonoluminescence Strong vibrations

Cavitation corrosion Material erosion

Cavitation usually has negative effect such as: decrease of efficiency, 
increase of noise and vibrations, and can cause damage during bub-
ble implosion in front of surfaces. Bubble implosion leads to cavitation 
erosion. That erosion has unwanted consequences, it is pitting.
It is known that pitting is result of continuous metal surface erosion. 
The technical standard IEC 60193 prescribes the permissible values of 
pitting, for example on Francis turbine runners is approx. 40 mm. Aver-
age losses on observed blades are 5 kg/m2 for 10 000 work hours, and 
repairs have been done every 40 000 working hours, [8].
Relevant international standards does not describe permissible 
amounts of eroded material depending to runner dimensions, for ex-
ample; blade thickness. Figure 3. Show examples of damage at Fran-
cis turbine runner: a) at hub b) surface cavitation at blades, c) cavita-
tion of inlet edge, [9].
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Figure 3. Cavitation erosion damage at Francis turbine[9]

Fig. 4: a) and b) is given example of pump cavitation erosion, and at c) is 
given example of screw propeller ruined by cavitation erosion, [10] and 
[11].

Figure 4. Cavitation erosion damage at pump and ships propeller [10, 11]

Erosion damages propagate during the machine operation and can 
lead to crack occurrence. Timely rehabilitation is necessary. However, 
if the reconstruction causes a change in the geometry of the blade, 
such a location can become a source of new separation of fluid flow, 
i.e. cavitation flow and new erosion. Increased vibration, noise and 
reduced usability of such a machine must not be neglected. The rate of 
destruction of solid wall material under the influence of the cavitation 
process is not always the same and depends on several factors from 
which they can be separated into:
frequency – higher frequency  means faster destruction of materials;
material characteristic;
cavitation bubble dimension – the damage also depends on the size 
of the bubbles, smaller bubbles have a higher frequency of implosion 
and often cause more damage than larger bubbles but have a smaller 
effect on the rest of the system; 
hydraulic machine operation condition – cavitation increases frequent-
ly when operating modes change, or sudden changes in the system 
occur.

Electric Power Research Institute, EPRI [12] separate most important 
causes of cavitation erosion such as: geodetic position of machine, 
hydraulic turbine design, runner blades profile, machine operation 
mode, water quality, material etc. 
Cavitation cannot be avoided but its effects can be minimized. Dur-
ing the exploitation it is important to take care about EPRI important 
causes, such as machine operation mode.

3. CAVITATION TYPES
There is a whole series of categorizations of the phenomenon of cavitation, 
the most common criterion being the location of occurrence, Table 2. The 
whole series of studies in the focus of research activity has just mentioned 
criterion.

For example, Franc & Michel specify eight types of cavitation, Franc[13] 
two types while Ozonek [14] mention four types of cavitation, and Ave-
lan [15],[16] mention eight types of cavitation. 
Authors take place of origin as division such as: inlet edge cavitation, 
surface cavitation, detached vortex cavitation, hub cavitation, inter-
blade vortex cavitation, draft tube swirl, Von Karman vortex cavitation 
etc.
Basic criterion for categorization of cavitation is the type of hydraulic 
machine on which it occurs: pumps, turbines, marine propellers. Phys-
ically, two basic types of cavitation can be determined: vortex cavita-
tion, and bubble cavitation, and their combination, and if the criterion 
is location in the broad sense, then profile cavitation, gap cavitation 
and central cavitation are distinguished Profile cavitation will occur 

when a fluid obstructs a surface at a certain angle, provided that the 
pressure on one side of the profile is higher and on the other is less 
than the ambient pressure. Vapour bubbles appear on the profile sur-
face when the pressure drops below the evaporation pressure of the 
water on the pressure side. The bubbles persist until the pressure is 
higher than the evaporation pressure, followed by condensation and 
cavitation erosion. According to the intensity of cavitation, profile cavi-
tation can be defined as: initial stage, advanced stage, super cavita-
tion, Šarc at al.[17].
The cavitation in the clearance is due to the excessive clearance be-
tween the rotor and the turbine housing. Previously, the phenomenon 
of pressure and suction side has been clarified, and if the gap between 
the impeller blade and the turbine housing is too large, the fluid over-
flows from the pressure side to the suction side, [5].
Central cavitation generally occurs when the turbine is operating in 
optimum area.

Table 2. Types of Cavitation - Research Results 

Researchers Types of cavitation-Research 
Results 

Franc &Michel [13]  Travelling bubble cavitation, bubble cavita-
tion in the shear layer, localized bubble 
cavitation, localized attached cavitation hub 
vortex cavitation, tip vortex cavitation, de-
tached vortex cavitation, surface cavitation.

Bagienski [18]  Surface cavitation, detached vortex 
cavitation. 

Ozonek [14]  Vaporous cavitation, gaseous cavitation, 
flow cavitation, vibratory cavitation, acoustic 
cavitation.

Thakkar at al. [19], Escaler at al. [3]  Flow cavitation, traveling bubbles, attach 
cavities, vortex cavitation.

Li [20]  Leading edge cavitation, flow cavitation, 
traveling bubbles, ˙draft tube swirl; inter 
–blade vortex cavitation; Von Karman vortex 
cavitation. 

Avelan [15],[16]  Flow cavitation, traveling bubbles, leading 
edge cavitation, inlet edge cavitation, inter 
–blade vortex cavitation, Von Karman vortex 
cavitation, cavitation whir, hub cavitation. 

4. CAVITATION DETECTION TECHIQUES

4.1 General approach
Cavitation detection techniques or methods are numerous and can be 
categorized according to different criteria, as well as types of cavita-
tion. Thus different authors have different approaches depending on 
the interest and experience of the researcher. However, it should be 
noted that cavitation is a phenomenon or characteristic of hydraulic 
machines that, unfortunately, cannot be transferred with certainty from 
a model to a prototype of a real plant. It has just been mentioned very 
important in the development of cavitation detection diagnostics. 
If technical and technological conditions are taken as a categorization 
criterion, then two basic categories can be distinguished: cavitation 
detection: first, cavitation detection on the model i.e. in laboratory con-
ditions, second, cavitation detection on the prototype i.e. in real plant 
conditions. Furthermore, if the physical characteristic of the measure-
ment is taken as a categorization criterion, then five basic types of cav-
itation detection and five methodological groupings are naturally de-
termined: visual methods, acoustic methods, pressure measurements, 
vibrational methods and ultrasonic method. There is also the division 
of cavitation detection methods into: direct and indirect methods. The 
direct method is just visualization while all other methods are indirect. 
Methods for detecting cavitation in real plants are based on meas-
urements and analysis of received signals, which is not an easy task 
since, depending on the shape of the turbine and operating conditions, 
cavitation always occurs in other places and in other forms. Further-
more, the measured signals on the sensors can be interfered with by 
noise coming from a part of the plant other than the one we primarily 
measure. Therefore, it is necessary to carefully locate a good place-
ment of the measuring sensor. For vibration measurement, it is best to 
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Figure 3. Cavitation erosion damage at Francis turbine[9] 
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choose accommodation on the turbine bearing, while pressure is best 
measured on whole or spiral housings. It is quite important that the 
measurements and signals obtained are well studied and processed 
on the basis of a large enough sample to be as accurate as possible. 
It has already been emphasized in previous sections that cavitation 
is an unstable phenomenon that raises low-frequency oscillations of 
pressure as well as pulses of high-frequency pressure. This pressure 
oscillation depends on the dynamics of the cavities, e.g. shape, type, 
location, and the pressure pulse occurs due to the implosion of these 
cavities. Both phenomena emit vibrations and acoustic noise and are 
propagated by hydrodynamic and mechanical systems. Thus, using 
suitable sensors that measure vibration and cavitation noise, the phe-
nomena of cavitation in a hydraulic machine can be detected or ana-
lysed. Sensors such as accelerometers, acoustic emission sensors are 
attached to the outer walls of fixed components, and dynamic pres-
sure transducers are mounted on the wet wall, Khakurel [5].

4.2 Literature Review 
Several cavitation detection methods have been investigated. Table 3 
gives a brief overview of the results of relevant studies of the cavita-
tion phenomenon on hydraulic machines, with particular emphasis on 
cavitation detection techniques.

Table 3. Research results –cavitation detection

Researcher Techniques for cavitation detection

Thakkar [19] Pressure measurement, visual methods, vibration measure-
ments

Koivoula et al. [21] Visual methods, noise measurements, Pressure measure-
ment and vibration measurements, ultrasonic methods

Šiško [6] Pressure measurement, acoustic method, vibration mea-
surements, 

Li [20] Pressure measurement, visualising, vibration measurements,

Escaler et al. [22] Pressure measurement, visual methods, vibration measure-
ments

Cecio et al. [23] acoustic method

Eich [24] Pressure measurement, acoustic method

Backe et al. [25] Pressure measurement, vibration measurements

Pressure, vibration and acoustic pressure measurement are relatively 
effective methods of cavitation detection.
Grätz et al. [26] and Riedel et al. [27] studied steady-state flow proper-
ties in cavitation openings. They obtained parameters that can rela-
tively reliably estimate the occurrence of cavitation in openings.
Wiklund et al. [28] and Myllykylä et al. [29] studied the pumping ability 
of different pumps. They recorded remarkable results - a decrease in 
pump output when the suction portion of the pump is cavitated.
Bajić [30] and Eich [24] studied the cavitation noise in the cavitation 
orifice flow and analysed the recorded acoustic pressure with visual 
inspection. He concluded that the acoustic method detected the onset 
of cavitation prior to the visual method. Eich found that at the onset 
of cavitation, the first responses were in acoustic pressure at high fre-
quencies (> 20 kHz).
Backè et al. [25] used accelerometers in their research. They found 
that the accelerometer signal indicates cavitation before changing the 
flow properties at steady state.
Visual inspection in the cavitation orifice stream has been used in 
several studies (e.g., Šiško [6], Eich [24]). Bajić [30]), In these stud-
ies, relatively slow cameras were used; High-speed photography has 
been used in cavitation research in water tunnels (e.g., Knapp et al. 
[31]). Slow cameras detect the presence of cavitation, but only a quick 
photo gives detailed details and information about the size and speed 
of cavitation cavities.
Koivula et al. [21] have explored a number of useful results by explor-
ing cavitation detection techniques, and a brief summary of the above 
is given below
Direct cavitation detection is only possible if measuring or detection 
instruments can access the cavitation zone. This is a very difficult task 
due to the fact that cavitation as a phenomenon is usually very local 
in nature. Cavitation detection can only be done directly by checking 
the existence of cavitation bubbles. Visualization of bubbles in flow 
passages can be successfully done if light can be scattered in the 
observation zone. This requires at least two windows for visualization. 

Observing the behaviour of ultrasonic waves can reveal the existence 
of cavities. High flow speed causes ultrasonic waves to deflect. Due 
to the difficulty in direct detection methods, several indirect cavitation 
detection methods may be considered. In indirect or indirect meth-
ods, measurements are focused on the shock waves generated by 
the cavitation bubble implosions. Impact waves propagate relatively 
quickly and far and the position of the sensor is not as limited as in di-
rect measurement. In the observed study, cavitation was indirectly de-
tected by pressure sensors, accelerometers and acoustic instruments. 
The results showed that the initial phase of cavitation was character-
ized by intense high frequency pulsations. When cavitation develops, 
the pulse also extends to lower frequencies.

4.3 Pressure measurement
Pressure measurement is a standard technique for the determination 
of cavitation on hydraulic machines and is most commonly used in 
combination with vibration measurement to achieve the most accu-
rate results of the cavitation process. When a bubble enters a high-
pressure zone, it vibrates and induces vibrations as well as pressure 
pulses, Ceccio & Brennen [32].
Escaleret et al. [33] implemented cavitation detection experiments on 
a Francis turbine by measuring pressure with demodulation amplitude. 
Figure 5 shows the frequency pulse pressure for the cavitation bubble 
type and the bez (flow) flow without cavitation. As can be seen, when-
ever pressure waves are generated due to cavitation, high peaks in the 
frequency band are obtained.

Figure 5. Peak pressure values measured [33]

Pressure changes at draft tube are presented at Figure 6, for different 
machine operational conditions, and is obvious that  the cavitation de-
tects in lower frequency range than in case Peaks are presented when 
cavitation occur.

Figure 6. Draft tube pressure at different condition [33]

In their extensive experimental studies, Koivula et al. [21] used, among 
other things, the pressure measurement method, and they came to a 
number of conclusions. For example, in indirect cavitation detection 
methods, the question of the measurement of shock waves caused by 
cavitation bubble implosions is usually raised. Bubble inhibition is first 
seen at very high frequencies and therefore very fast pressure trans-
ducers are required. The propagation of shock waves continues from 
the fluid to the environment.
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Figure 7. Draft tube pressure for different cavitation periods [10] 

 
The observed study used high - speed transducers to measure peak-to-peak 

vibration pressure. Figure 7 shows diagrams of time dependence of pressure and 
the appearance of cavitation rising from left to right. 
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the test station are made of plexiglas, for example, Figure 8.  

 

 
 

Figure 8. The test station of the propeller [10] 
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Figure 7. Draft tube pressure for different cavitation periods [10]

The observed study used high - speed transducers to measure peak-
to-peak vibration pressure. Figure 7 shows diagrams of time depend-
ence of pressure and the appearance of cavitation rising from left to 
right.

4.4 Visual method
This method is very popular in last decade especially at hydraulic 
machines model tests, Šiško [6], Bajić [30]. It is based on the use of 
stroboscopes and superfast cameras that hang against the Plexiglas 
window, and sometimes whole sectio
ns of the test station are made of plexiglas, for example, Figure 8. 

Figure 8. The test station of the propeller [10] 

The test station of the Francis turbine model is shown in Figure 9. In an 
extensive study of the cavitation phenomenon conducted by Illiescu 
et al. [1] used LDV (Laser Doppler Velocimetry) systems, optical mirror 
systems, superfast cameras, diffuser pressure sensors.

Figure 9. The test station of the Francis turbine model [1]

Avelan [15, 16] investigated cavitation using centrifugal pumps and 
Francis turbines by visual method.
The results of his research show that the occurrence of cavitation on 
centrifugal pumps is primar- ily a function of the flow coefficient ϕ, 
which depends on the value of the relative velocity and the angle of 
incidence of the liquid at the inlet edge of the blade. In principle, trave-
ling bubble cavitation occurs on the suction side of the blade while the 
pressure value is lowest in the rotor throat. At low pump flow rates, 
the cavitation of the blade inlet edge appears, Figure 10. [15]. Also, at 
low values of the cavitation number ˙σ, a cavitation swirl appears at the 
inlet of the pump rotor [16]. 

Figure 10. Leading edge cavitation at inlet of pump [15]

Cavitation vortex at Francis turbine draft tube is visualized through the 
Plexiglas, Figure 10.
A more modern approach to the visualization method is taken by well-
known Slovenian researchers Širok et al. [34] who quantified the oc-
currence of cavitation on Kaplan turbines by the method of computer 
aided visualization, Figure [11]. Using CCD (Charge-Coupled Device) 
cameras, stroboscopes and computers (video graphics card) in dif-
ferent turbine operating modes, the occurrence, shape and intensity 
of the cavitation vortex in the throat of a Kaplan turbine diffuser were 
analysed.

Figure 11. Computer aided visualization [35]

Patel [36] carried out a very interesting study of the occurrence of cavi-
tation at a pump operating in turbine mode. A glass tube was installed 
at the inlet of the diffuser to visualize the cavitation process, Figure 12.

Figure 12. Travelling bubble type cavitation (left) Vortex rope cavitation (right) `[36]

Two types of cavitation are mainly observed: bubble traveling cavita-
tion and cavitation vortex.

4.5 Vibration measurement
Methods for detecting cavitation on real machines are, in principle, 
based on measurements and analysis of induced signals. Detection of 
cavitation is not an easy job at all, because it is in the function of sev-
eral variables, such as the design and operating state of the machine, 
the type of cavitation, its location and behaviour.
Cavitation vortices and unstable cavities with large oscillating volume 
cause interference with the main stream and lead to strong pressure 
pulses within the hydraulic system. This low frequency fluctuation can 
be detected by means of pressure transducers mounted on the dif-
fuser wall. If the fluctuation intensity is strong, detection can also be 
performed with structural vibrations. Thus, in this case, the procedure 
only requires an analysis of the frequency content of the pressure and 
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strong, detection can also be performed with structural vibrations. Thus, in this 
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another source whose sources can be quite diverse, i.e. of hydrodynamic, mechanical 
or electromagnetic origin. Therefore, selecting the most appropriate sensors and 
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vibration signals in the low frequency range, Bajić [30].
Furthermore, the measured signals can be contaminated by noise from 
another source whose sources can be quite diverse, i.e. of hydrody-
namic, mechanical or electromagnetic origin. Therefore, selecting the 
most appropriate sensors and measuring position on the machine are 
fundamental to improving the quality of cavitation detection.
Most of the researchers who deal with these issues agree with this. 
A number of successful studies have been implemented, for example 
Escaleret et al. [22, 33] conducted experiments and vibration analysis 
and proposed to measure the structure of cavitation noise transmit-
ted by liquid. The amplitude of a particular frequency range can be 
compared for different operating conditions by calculating the inten-
sity of the time signal spectrum. The vibration peaks with amplitude 
demodulation are shown in Figure 13. High frequency analysis cannot 
give definitive results as other phenomena can also cause machine 
vibration and thus perform high frequency amplitude demodulation.

Figure 13. Vibrations peak with amplitude demodulation, [22]

In the observed research, experiments were performed on the Francis 
turbine model; vibrations were measured using three accelerometers 
in different positions. One on the shaft and two on the 90 degree bear-
ings. Different acceleration values   within the given frequency range 
were measured for different openings of the control blades and it was 
concluded that the turbine was separated from its BEP (Beam Experi-
mental Platform), higher peaks were obtained at the frequency of 6 
kHz as shown in Fig. 14 and Fig.15. where the Guide Vane Opening 
[%] is the opening of guide vane mechanism.

Figure 14. Vibration at bearing for different GVO,[22]

Figure 15. Vibration at shaft for different GVO,[22]

Koivula et al. [21] also explored the method of detecting cavitation by 
measuring vibrations. 

4.5 Cavitation noise measurement
Studying vibrations, acoustic emissions, and dynamic pressure lev-
els in a high frequency range is a well-known technique for detecting 
cavitation. The amplitudes of the set frequencies can be compared for 
different operating conditions by computing the time signal spectrum. 
A steady and sharp increase in frequencies when compared to a state 
where there is no cavitation can indicate the presence of cavitation. 
The use of acoustic emission sensors allows this analysis to be ex-
tended to upper frequencies that accelerometers cannot reach. The 
information we get is sometimes irrelevant because sometimes we get 
signals and frequencies from other parts of the system or environment. 
Therefore, it is necessary to use an amplitude demodulation technique 
to improve diagnostics.
Eskaler et al. [22, 3] performed experiments on a Francis turbine mod-
el by measuring acoustic emission. The figure shows the measured 
acoustic emissions for the different openings of the control blades (A0) 
for the frequency range from 0 kHz to 20 kHz. The values increased 
with increasing GVO GVO with the exception of the abrupt fall of 90% 
measured by the accelerometers. Bajić [30] performed measurement 
on Kaplan turbine, Dubrava HPP – Croatia. 
Patel et al [37] performed acoustic emission analysis on a pump as 
a PAT (Process Analytical Technology) turbine operating at different 
speeds to detect cavitation. 
Koinvoul et al. [21] also used an acoustic method in their extensive 
cavitation studies. A number of conclusions have been reached, for 
example: more extensive information on cavitation occurrence is ob-
tained when measuring cavitation noise with a large range of high fre-
quencies. Moreover, if the results are plotted as a frequency spectrum, 
the onset and development of cavities is clearly seen. The measured 
frequency spectrum of the acoustic pressure is shown as a 3D graph 
in Figure 16. Over a period of 3s, one can clearly see the moment of 
cavitation occurrence in a sharp increase in acoustic pressure at high 
frequencies (> 8 kHz). When cavitation develops, the acoustic pres-
sure also extends to lower frequencies. The same trend is observed 
in spectral analysis when measuring the pressure and vibration of the 
origin and development of the cavitation process.

Figure 16. Frequency spectrum of acoustic pressure [21]

Ceccio et al. [23] and [32] showed that cavitation noise analysis is a 
useful tool for investigating the properties of cavitation phenomena. It 
is easy to measure the noise structure in a turbine, while it is very dif-
ficult to measure noise transmitted to the fluid because it is impossible 
to fit a pressure sensor in the turbine rotor. It must also be borne in 
mind that cavitation noise cannot be directly measured, since the sig-
nal strength as they propagate is attenuated. Nevertheless, the spec-
tral content of high frequencies and modulating frequencies can be 
used to detect cavitation.

4.6 CFD Analyses
CFD (Computational Fluid Dynamics) is branch of fluid mechanics 
which uses numerical analyses and solving Navier-Stokes equations 
for predicting and solving problems in fluid mechanics. Computers are 
used to calculate fluid flow and interaction between liquid and vapour 
phase with boundary conditions.
In last time CFD is used often for solving most complex problems in 
turbomachinery worldwide. Supercomputer with powerful processor 
and better overall performances are needed for better results. And that 
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CFD (Computational Fluid Dynamics) is branch of fluid mechanics which uses 
numerical analyses and solving Navier-Stokes equations for predicting and solving 
problems in fluid mechanics. Computers are used to calculate fluid flow and 
interaction between liquid and vapour phase with boundary conditions. 

In last time CFD is used often for solving most complex problems in 
turbomachinery worldwide. Supercomputer with powerful processor and better 
overall performances are needed for better results. And that is the problem because 
the supercomputer cost too much. For cavitation problems CFD can predict fields 
where cavitation will appear but cannot predict the effectiveness of cavitation 
erosion. 

Two are mean principles in numerical solving of cavitation problems in CFD: 
first is mixture model and the second one is eulaerian model. There are lot 
numerical models implemented in these two mean principles such as: 1) Singhal i 
sur. – better known like Full Cavitation Model, 2) Zwart-Gerber-Belamri, 3) Schnerr 
& Sauer, and like Kunz-a... The most common models for cavitation modelling are 
IFM (Intensity Function Method), GLM (Gray Level Method), DBM (Discrete Bubble 
Method). There is a combination of GLM i DBM method and that is EPM (Erosive 
Power Method). 

Numerous investigators for the first phase investigations use this method. 
Sedlar et al. [38] described new model for cavitation erosion prediction using 
numerical modelling of turbulent cavitation. They analysed dynamic behaviour of 
cavitation bubbles which occur with gradient of pressure change in hydraulic 
machine. Potential cavitation erosion model is based on energy dissipated by 
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is the problem because the supercomputer cost too much. For cavita-
tion problems CFD can predict fields where cavitation will appear but 
cannot predict the effectiveness of cavitation erosion.
Two are mean principles in numerical solving of cavitation problems 
in CFD: first is mixture model and the second one is eulaerian mod-
el. There are lot numerical models implemented in these two mean 
principles such as: 1) Singhal i sur. – better known like Full Cavitation 
Model, 2) Zwart-Gerber-Belamri, 3) Schnerr & Sauer, and like Kunz-a... 
The most common models for cavitation modelling are IFM (Intensity 
Function Method), GLM (Gray Level Method), DBM (Discrete Bubble 
Method). There is a combination of GLM i DBM method and that is 
EPM (Erosive Power Method).
Numerous investigators for the first phase investigations use this 
method. Sedlar et al. [38] described new model for cavitation erosion 
prediction using numerical modelling of turbulent cavitation. They ana-
lysed dynamic behaviour of cavitation bubbles which occur with gradi-
ent of pressure change in hydraulic machine. Potential cavitation ero-
sion model is based on energy dissipated by bubble. Energy which has 
dissipated through bubbles collapse is used for shock wave modelling 
which spreads from bubble. Part of shock wave energy transmitting to 
surface represent erosion potential.
Nohmi et al. [39] are using CFD analysed cavitation processes for 
centrifugal pumps. They used two models: two-stage model for com-
pressible fluids, better known as TE model, and other CEV (Constant 
Enthalpy Vaporization) model. Both models have same results of pre-
diction, Figure 17.

Figure 17. Bubble collapsing [39]

Both models show suction head drop when cavitation occurs. Analy-
ses have shown that for higher fluid velocities model need to be modi-
fied. Iosif et al. [40] presented an explicit numerical one model based 
on finite element method and dual reciprocal method. They suggested 
using a model to transform 3D flow into 2D problems for an ideal non-
compressible fluid. They solved the axisymmetric potential flow us-
ing FEM (Finite Element Modelling) by determining the distribution of 
pressure and velocity along the stream. The results were analysed for 
a reversible hydraulic machine and showed different flow values previ-
ously used to determine the cavitation characteristic and the sensitivity 
curve.

5. CONCLUSION
Cavitation is the undesirable phenomenon at hydraulic machines that 
can be predicted and with various techniques reduced but never en-
tirely avoided. 
Many researchers used various techniques such as visual method, 
pressure and cavitation noise measurements, CFD methods for pre-
dicting and analyses of cavitation. Also techniques are used for predic-
tion cavitation erosion potential.
It is rare to use only one technique. Usually two, three or four tech-
niques are used for reliably prediction.
For model test visual method is most dominant method, but for hy-
draulic machines in operation pressure and vibration measurement are 
most used techniques.
Several researchers noticed that the cavitation can be registered firstly 
with pressure measurement method than with visual method.
It is widely known that the cavitation characteristic can’t be translated 
from model test to real machines. That means it is necessary to invest 
more time to determine the cavitation characteristic.
Numerical CFD simulations can reliably determine cavitation but can-
not predict cavitation erosion with great accuracy. In future the CFD 
simulations in turbomachinery will be in progress and potentially domi-
nant in determination of cavitation characteristic.
Each of the methods for cavitation detection on hydraulic machines 
has advantages and disadvantages and there are gaps for improve-
ment. However, the main problem is fact that there are no exactly for-
mula for linking relation from laboratory cavitation test to prototype 
cavitation, until now. Moreover, real cavitation characteristics can only 
be obtained on hydraulic machines in operation in the real facilities. 
Following this, the acoustic method is easy to apply and has signifi-
cant potential in linking laboratory tests and tests on prototypes. So, 
future research should put focus on acoustic method and closer coop-
eration between scientists and engineers involved in the maintenance 
of hydraulic machines.
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