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SUMMARY
 
Due to the limited number of corridors multi circuit line configurations are often applied. These 
overhead lines frequently consist of high towers that are subject to lightning strokes. In case of higher 
current amplitudes and higher footing resistances due to bad earthing conditions back-flashovers are 
caused leading to common mode failures and to severe outages. 
 
The paper describes investigations performed by means of computer simulations to identify the towers 
of a multi-circuit line consisting of voltage levels 380 kV, 220 kV and 110 kV that are endangered by 
back-flashovers of the 110-kV double-circuit lines. The footing resistance of towers of the targeted 
line section has been measured by an instrument at high-frequency. Influence of various factors on the 
back-flashover over 110 kV insulator strings has been studied by means of EMTP-ATP simulations. 
Different current waveforms of the lightning stroke have been used to represent the first stroke and 
subsequent strokes. The towers are represented by the models described in [3], [8]. Available 
flashover analysis methods [7], [8], [12], [13] like leader development method by Pigini et al and by 
Motoyama, and voltage-time integration method by Kind have been applied. 
 
The towers at which back-flashover is more likely to occur than at other towers are identified by the 
time integral of voltage according to Kind. Various factors like tower footing impedance, tower surge 
impedance and tower height are considered. Application of line a surge arrester is shown to be a 
successful mitigation technique to reduce the back-flashover rate of those 110 kV lines. The lightning 
overvoltage performance of surge arresters has been analyzed by means of digital simulations. Based 
on the results of investigations line arresters were installed on the towers in question. Since the 
installation no further common mode failure has been observed. 
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1. INTRODUCTION
 
Three-phase tripping of a 110 kV double-circuit overhead line has been increased in a certain region, 
where relatively tall multi-circuit transmission towers were installed. The lightning strokes registered 
in this region showed a maximum stroke current of 90 kA. The high-frequency measurement of the 
tower footing resistance with a 26 kHz measuring current has revealed that the resistance value is 
relatively high at the some towers. 
 
A back-flashover analysis should indicate which towers of that 5.2 km line route are rather prone to 
back-flashovers of the 110 kV insulator strings depending on different factors like tower footing 
resistance, tower surge impedance, tower height, etc. There are various methods published before to 
model lines, towers, lightning strokes and flashover mechanism over the insulators. Since 
measurements on real towers [1] are costly, various simulation models should be compared with each 
other to validate the simulation results. 
 
The transients program EMTP-ATP [2] with the integrated simulation language MODELS is well 
suited to analyze lightning surge phenomenon on overhead lines as reported in numerous publications 
[3], [4]. Nearly all system components can be represented by built-in elements in EMTP-ATP like 
overhead lines with phase and ground wires and towers [5]. The flashover criteria or sophisticated 
representation of tower footing resistance and lightning stroke current can be modelled preferably 
using MODELS or TACS. 
 
A measure to prevent back-flashovers is to apply line surge arresters. The protective level of the surge 
arrester for lightning strokes should be selected such that the limiting voltage of the surge arrester is 
smaller than the flashover voltageof the insulator. Furthermore, it is important to equip a series of 
towers with surge arresters without leaving out a tower in-between. Otherwise back-flashover at that 
tower without surge arresters may be expected due to discharging of surge arresters at the adjacent 
tower. 
 
2. MODELING METHOD 
 
The modelling method for the back-flashover analysis 
used in this paper is based upon various publications on 
this field [3], [6 – 9]. 
 
1.1. Towers
 
The height of multi-circuit towers varies in the range of 55 
… 88 m. The tower structure also varies from tower to 
tower along the 5.2 km route. The layout of a typical 
suspension tower is shown in Fig. 1. The distances are 
given in meters. The upper two cross-arms carry at left and 
right side a 220 kV and 380 kV single-circuit line, 
respectively. A 110-kV double-circuit line is suspended 
from the lowest cross-arm. 
 
The tower is represented by loss-less Constant-Parameter 
Distributed Line (CPDL) model [2]. The propagation 
velocity of a travelling wave along a tower is taken to be 
equal to the light velocity, 300 m µsc = [3], [8]. The tower 

travelling time is t
h
c

τ = .  h is the tower height. 

There are several formulas to calculate the surge impe-
dance of the tower [3], [8]-[10]. As a basis, the formula 

Fig. 1: Layout of a typical multi-circuit 
suspension tower 
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given in [10] for “waisted tower shape” (Fig. 2) and recommended by IEEE and CIGRE [8] is used: 
 

160 ln cot 0.5 tant waist
RZ
h

−
−

⎡ ⎤⎧ ⎫⎛ ⎞= ⋅ ⋅⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎩ ⎭⎣ ⎦

 (1) 

where  1 2 2 3 1r h r h r hR
h

+ +
=   and  1 2h h h= +  

 
For a tower of 76.5-m height the equation (1) delivers following 
value: 

233.3t waistZ − = Ω . 

It is recommended in Japan [3] to consider frequency-dependent 
effects for wave propagation along towers, when the tower 
footing impedance is represented by a linear resistance, which is 
the case in this study, because the influence of the surge 
impedance and the frequency-dependent effect of a travelling 
wave along the tower becomes rather noticeable. As an 
alternative, the tower model consisting of CPDL model sections 
is added by RL parallel circuits at each section to represent 
travelling wave attenuation and distortion as shown in Fig. 3.  
 
The RL values are determined as functions of surge impedance 
Zt, travelling time τt, distances between cross-arms x1, x2, x3, x4, 
and attenuation factor, 0.89α = as recommended in [3] by 
following equations: 
 

12 lni
i t

xR Z
h α

⎛ ⎞= ⋅ ⋅ ⎜ ⎟
⎝ ⎠

 (2) 

 
2i t iL Rτ= ⋅  (3) 

 
1.2. Number of Modelled Towers 
 
Total 19 towers of a part of a line route shown in Fig. 4 are 
represented including all overhead line circuits. Direct lightning 
strokes to towers between tower #1 and #12 are analyzed.  
 
 
1.3. Transmission Lines 
 
All overhead lines at the same tower are represented by the CPDL 
model at 400 kHz.f = The ground wire is represented like a phase 
wire, which is connected to the top of the towers (see Fig. 1). Data of 
the conductors are: 
 

− 380 kV:  4 conductors/phase, ACSR 265/35 Al/St 
− 220 kV:  4 conductors/phase, ACSR 265/35 Al/St 
− 110 kV:  1 conductor/phase, ACSR 265/35 Al/St 
− ground wire:  AY/AW 216/33 (aerial cable) 

Fig. 2: Waisted tower shape as 
approximation to calculate 
tower surge impedance 

Fig. 3: Tower model with 
RL-circuits 
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In order to take into account the effect of 
the AC steady-state voltage of the lines on 
a lightning surge, the transmission lines 
are connected to AC voltage sources via 
multiphase matching impedance (surge 
impedance matrix). 
 
1.4. Lightning Current and 

Impedance
  
The lightning stroke is modeled by a 
current source and a parallel resistance, 
which represents the lightning-path 
impedance (Fig. 5). Lightning-path 
impedance is selected as 400 Ω according 
to [3].  
 
Two different lightning current waveforms are used to 
represent a) first stroke and b) the subsequent strokes: 
 
a) CIGRE waveform of concave shape with front 

time, 3sfT =  and time to half value, 

77.5 shT = . 
b) Linear ramp waveform with 1sfT =  and 

30.2 shT =  
 
In fact, according to [8] the front time of the first 
stroke depends on the peak value of the lightning 
current. In this study Tf and Th are assumed to be 

constant. Fig. 6 shows both current waveforms with a 
magnitude of 50 kA. 
 
1.5. Flashover Models 
 
Flashover or back-flashover models estimate the breakdown of the air between the arcing horns of the 
line insulators under non-standard wave forms. In the literature mainly two methods are known 
besides the simple flashover estimation by means of a voltage-time curve of an insulator [7], [8]. 
There are integration methods and Leader development methods. In this study following three 
flashover models are applied for comparison purposes.  

a. Equal-area criterion by Kind  
[6], [8], [14]; 

b. Leader development method by 
Motoyama [4], [12]; 

c. Leader development method by Pigini 
et al. [8], [13]. 

 
The gap length of the 110 kV phase 
insulators is 0.965 m. Wave deformation 
due to corona is not considered in the 
lightning surge simulations [3]. In this 
paper it is assumed that the lightning 
stroke terminates at the tower. The surge 

Fig. 5: Lightning stroke model consisting 
of current source and parallel 
lightning-path resistance 

Fig. 4: Modelled part of the transmission line route

CM5_cigre50kA3us.pl4: m:CURR   
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Fig. 6: Lightning current waveforms; CIGRE concave 
waveform, linear ramp function 
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propagating on the ground wire can normally be deformed by corona. Simulation results neglecting 
the corona are expected to be higher than considering corona. Consequently, the results will be on the 
safe side from the insulation viewpoint.  
 
2. BACK-FLASHOVER PERFORMANCE ESTIMATION 
 
In order to estimate roughly which towers on the route from tower #1 to #12 (Fig. 4) are endangered 
by back-flashovers across 110 kV insulators, the same lightning stroke is applied to each tower. Based 
on the equal-area criterion by Kind the time integral of the voltage across the 110 kV insulator is 
evaluated using the following integral on the left-side of equation (4) 

[ ]0
0

( )
flot

u t U dt F− ≥∫  (4) 

where 0 475.42 kVU = and 0.304 VsF = . Following two lightning current waveforms are adopted: 

− CIGRE waveform,  50 kA; 3µs / 77.5 µsI =  
− Linear ramp function, 50 kA; 1µs / 30.2 µsI = . 
 
Two different tower models are taken into consideration. The simulation results are summarized in 
Figures 7 and 8 for the different lightning current waveforms. The horizontal red line indicates the 
limiting value F according to flashover criterion by Kind. Focusing on Fig. 7, it can be said that a 
back-flashover can occur more likely at the towers #3, #5, #8, #9 and #10. Similar tendency is shown 
with a steep ramp lightning current in Fig. 8.  
 
There is a clear correlation between the flashover tendency – higher values of voltage-time integral – 
and the tower footing resistance, and a rather weak correlation between the flashover tendency and 
tower surge impedance can be observed as shown in Fig. 9. 
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applied current as ramp function 
 

As a simulation example, the computed waveforms of the voltage across the 110 kV insulator at tower 
#8 with flashover are shown in Fig. 10 and 11 for the three flashover models. With CIGRE lightning 
current waveform of magnitude 45 kA, a flashover is expected to occur according to Kind and Pigini 
et al. as shown in Fig. 10. Motoyama’s model causes a flashover, when the magnitude of the lightning 
current is 50 kA (Fig. 11). Note that the voltage waveform before flashover has been deformed in the 
case of Motoyama, because a pre-discharge current already flows as shown in Fig. 11. 
 
For the selected three towers #3, #7 and #8 the lightning current magnitude is varied in steps of 5 kA 
and several simulations have been performed. Taking the probability distribution relation for lightning 
crest current magnitudes according to IEEE [9] 
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2.6

1( )

1
31 kA

p i I
I

> =
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 (5) 

into consideration, it can be said that at the 
mostly endangered towers #3 and #8 with 
an average magnitude of I = 35 kA, 42 % 
of lightning strokes would cause a back-
flashover across 110 kV insulator. Tower 
#7 has a relatively low footing resistance. 
Hence at this tower higher current 
magnitudes are required for a back-
flashover. In case of CIGRE current 
waveform at least a 60 kA lightning stroke can cause a flashover. The corresponding probability of 
lightning strokes with I > 60 kA is about 15 %.  
 

 
Fig. 10: Flashover across 110 kV insulator at tower #8 according to Kind’s and Pigini’s model 
 

 
Fig. 11: Flashover across 110 kV insulator at tower #8 according to Motoyama’s model 
 
3. MITIGATION OF BACK-FLASHOVERS BY LINE SURGE ARRESTERS 
 
Line surge arresters parallel to the phase insulators of 110 kV circuits can prevent back-flashovers at 
those towers [16]. Towers #3, #5 and #8 are selected as mostly endangered towers by back-flashovers 
of the 110-kV lines and are equipped with line surge arresters. The model referring to [15] of the 
selected surge arrester with rated voltage of 156 kV and its nonlinear voltage-current characteristic are 
shown in figures 12 and 13, respectively.  
 
It can easily be checked by the Kind equal-area criterion that no flashover can occur across the 
insulator string parallel to the surge arrester, because the voltage across the insulator will be limited by 
surge arresters below U0 in equation (4) as shown in Fig. 14 for a lightning stroke with 
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L0 = 0.307 µH;  R0 = 153.5 Ω; 

C = 65.1 pF 
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Fig. 12: Surge arrester model Fig. 13: Voltage-current characteristic of the surge arrester 
 
The simulations of lightning strokes with 200 kA; 3µs / 77.5 µsI =  at the towers #3 and #8 also 
confirmed that no breakdown can occur across parallel insulators according to the other two flashover 
models by Pigini et al and Motoyama. 
 

 
Fig. 14: Voltages across six 110 kV phase insulators at tower #3 which are limited by line surge 

arresters (no flashover at adjacent towers is assumed) 
 
 

 
Fig. 15: Voltages between phase c and the tower at towers #1, #2, #4 and #5 of the 110 kV line due to 

discharging of line surge arresters at tower #3. No flashover at adjacent towers is assumed. 
 
Due to discharging of the surge arresters the voltage of the 110 kV phase conductors temporarily 
increases significantly. Fig. 15 shows voltages between phase c and tower at the towers #1, #2, #4 and 
#5, when a lightning stroke with 100 kA; 3µs / 77.5 µsI =  hits the top of the tower #3. The operating 
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50-Hz voltage of phase c is at moment of the lightning stroke equal to the negative peak value 
(−90 kV). Depending on the amplitude of the discharge current of surge arresters, a flashover may take 
place at other towers, which are not equipped with surge arresters. In this respect two cases have been 
studied: lightning stroke to towers #3 and #8, which are equipped with line surge arresters for 110 kV. 
Adjacent towers do not contain any line surge arresters. 
 

 
Fig. 16: Waveforms of voltages across 110-kV phase insulators with flashovers at towers #2 and #4  

(It is assumed that no line surge arresters are installed at those towers) 
 
The CIGRE current waveform with 3/77.5 µs as lightning stroke is used by increasing the amplitude in 
5 kA steps. The flashover condition is checked by the Kind equal-area criterion. At tower #3, when 
I > 95 kA and at tower #8, when I > 90 kA, a flashover is expected at the adjacent towers across the 
110 kV phase insulators. Waveforms of the voltage across flashed-over insulators are shown in Fig. 16 
for the case of lightning stroke to tower #3 with 110 kA. At tower #2 the phase b and at tower #4 the 
phases b and c attain flashover. Therefore the installation of line surge arresters at the towers #1 - #5 
and #8 - #10 is recommended to avoid flashovers when adjacent towers are hit by strokes in the range 
of 90 kA. 
 
An important question is, how well the surge arresters will perform in terms of energy absorption. A 
lightning stroke with 200 kA; 3µs / 77.5 µsI =  is applied as worst-case to the top of towers #3 and #8. 
It is assumed that no line arresters are installed at adjacent towers. Consequently, flashover takes place 
in all phases of the 110-kV double-circuit line at adjacent towers. Maximum energy absorption 
computed is 34 kJ, which is uncritical. 
 
4. CONCLUSION  
 
A flashover analysis has been performed for a 110 kV double-circuit overhead line, which is a part of 
a multi-circuit transmission route. The towers at which back-flashover is more likely than at others are 
identified in order to take countermeasures like installation of line surge arresters at those towers. 
 
Multi-circuit tower system is modeled with the graphical preprocessor ATPDraw and the simulations 
are performed using EMTP-ATP. Three back-flashover models are used to test the performance of line 
surge arresters, which can be successfully used to prevent back-flashovers at endangered towers. It is 
shown that for lightning stroke current amplitude from 90 kA upwards flashover occurs at the adjacent 
towers, when the phase conductors at those towers are not equipped with surge arresters due to 
discharge current of stressed surge arresters. Energy absorption of the selected 110 kV line arresters 
remains uncritical. 
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