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SUMMARY 

The subject of the analysis is a 300 MVA auto-connected power transformer in different loading 
conditions with regard to the load losses. During the electrical design time, some operating points of the 
transformer were analyzed in more detail using 2D electromagnetic field finite element method (FEM) 
software. The models included 2D magnetic stray field calculation and covered a range of transformer 
loading cases that covered some that are more difficult to solve with traditional analytic methods based 
on the static magnetic field calculations. This is due to the presence of a phase shift between the currents 
through the windings.  The results of the static magnetic Rabins’ method field calculation and the FEM 
method are compared and the best practice method is defined and determined accordingly. 
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1. INTRODUCTION 

Load losses in a power transformer consist of different loss components.  In general, these are 
the ohmic losses due to the winding and lead resistance, the skin-effect and proximity effect losses [1] in 
windings due to the stray field and additional losses outside of windings in the metal parts of transformer.  
As all these components add-up together in each case of the transformer load, the calculation of the stray 
flux density field distribution and, consequently, the losses is the first step to be taken.  The usual 
approach in losses calculation is to use the 2D cylindrical coordinate system and Rabins’ method [1] to 
model the stray field distribution.  However, this method relies on static magnetic field distribution and 
needs to have a balance of ampere-turns on the transformer-leg to be applied correctly within the scope 
of the method.  When there is a phase shift present in the winding currents, although the net sum of 
ampere turns in each time instance is still zero, the magnitudes of currents can not be directly fed to the 
mathematical model and used without some modifications.  This is why the 2D FEM solver is applied to 
test the range or feasibility of application of Rabins’ method in power transformer design.  The inherent 
drawback of the quasistatic calculation of the losses in conductor strands is in its need of high number of 
elements to represent the geometry in a correct manner.  The number of elements is in direct correlation 
with execution time of the calculation process and makes the usage of FEM less feasible in comparison 
with analytic methods. 
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2. MAGNETIC STRAY FIELD DISTRIBUTION IN A POWER TRANSFORMER DURING 
DIFFERENT LOADING CONDITIONS 

The power transformer must be capable of continuous service in all normal operational points.  
However, different loading conditions change the distribution of the ampere turns in the transformer 
winding geometry.  Hence, the additional losses along with skin-effect and proximity effect losses that are 
primarily influenced by the distribution of the stray field will also vary.  The cooling system must be 
capable of exchanging the heat between the transformer and the environment, keeping the temperatures 
of the transformer copper and iron in the acceptable range.  Therefore, the relevant loading case has to 
be found with respect to the load loss and additional losses.  The stray field of a transformer, or the 
magnetic induction distribution in the transformer, is a function of the current excitation through the 
windings.  Traditional methods only use analytic static magnetic field solution [1], [2] inside the core 
window based on the Rabins’ method.  The choice of operating points is made with maximum load losses 
in mind (see Table I). The graphical representation of the spatial 2D distribution of the magnitude of the 
magnetic induction vector field in cylindrical coordinate system is shown in the Fig. 1 for three normal 
(operating points without the phase shift between the currents) and one with the phase shift (cases 
correspond to ones given respectively in Table I).  

Table I Load cases considered. 

Loading 
condition ITV in A IFR1 in A IFR2 in A IP in A IS in A 

HV/LV(+) 0 1120 0   1120 0   687 0   433 0   
HV/LV (0) 0 1312 0   1312 0   879 0   433 0   
HV/LV (-) 0 1584 0   1584 0   1151 0   433 0   
HV/LV/TV 2436 90   1121 3.31   1121 3.31   763 14.38   400 18.18   

The final load case from the table I is illustrated in Fig. 1 d) and is represented graphically with 
complex magnitude of the vector of magnetic induction, or 

 
,

max( ( , , , )) for each , ,
t

B r z t r z


      (1) 

Calculated ohmic losses are given in the table II. The ohmic losses are only one part of the total 
losses and calculated directly, while the additional losses are estimated through the stray flux in a certain 
tap position of the power transformer.  Due to the fact that stray flux entering the conductive parts of a 
transformer is directly connected to the stray losses, different estimation formulae are constructed to 
emulate the behavior of the stray losses with respect to the stray flux level.  Usually, the losses are 
modeled through the portion of the flux entering the conductive materials.  While the currents are of the 
same phase angle, the distribution of the stray field in connection with the additional losses estimation 
can be done through the results at a single time instant.  However, when the phase shift between the load 
currents is present, the stray flux distribution changes in time (the character of the distribution changes).  
Consequently, the overall local maxima in stray flux distribution have to be found, the reduced stray flux 
curves need to be calculated and only then is the estimation of the stray losses possible using the same 
principles as in the other cases of operation.  The illustration of the basic idea of additional (stray) losses 
estimation is presented in figure 2.  The (axial component of) magnetic flux density distribution through 
the middle of the windings, the stray flux and reduced stray flux integral curves are given as a visual 
representation of the stray losses in different tap positions and operating points.   

Table II Ohmic loss in different loading conditions. 

Configuration T ohmic loss in 
kW/phase 

FR ohmic loss 
in kW/phase 

LV ohmic loss 
in kW/phase 

HV ohmic 
loss in 

kW/phase 

Total ohmic 
loss in kW 

HV-LV(+) 1.7 13.5 49.8 126.7 575.0 
HV-LV(0) 0.3 0.1 70.8 126.7 593.7 
HV-LV(-) 0.4 25.9 115.1 126.8 804.8 

HV-LV(1)-T 36.6 4.5 56.1 105.0 606.6 
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 a) b) c) 

 
  d) 

Fig. 1 Distribution of the magnitude of the magnetic induction vector (complex magnitude) on the 2D axisymmetric 
geometry of a power transformer; a) HV/LV(+); b) HV/LV (0); c) HV/LV (-); d) HV/LV/TV loading condition. 
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Fig. 2 Axial magnetic induction distribution (complex magnitude) in the radial direction in the plane of the symmetry of 
the winding heights during different loading conditions; a) HV/LV(+); b) HV/LV (0); c) HV/LV (-); d) HV/LV/TV. 
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The stray flux lines of the transformer stray field have predominantly axial component (see Fig. 1) 
in the middle of the winding and for the most of the winding height.  At the top and bottom of the winding, 
the stray flux lines gain the radial component.  Therefore, the winding can be effectively subdivided in two 
regions, one with predominant radial skin-effect and one with the axial skin-effect.  The skin-effect 
calculation requires that each strand of the continuously transposed conductor (CTC) is modeled.  As the 
radial flux density field is strongest at the winding ends, it is enough to model 5-10% of the winding height 
in more detail.  The other part of the winding that needs to be represented in more detail is the middle of 
the winding, where the axial skin-effect is the strongest.  Subdivisions that allow the simplification of 
geometry are presented in Fig. 3. 

  
 a) b) 

 
c) 

Fig. 3 FEM model of the winding end a), winding middle b) and a detail of CTC conductor array modeled c). 

It is fairly easy to recognize that the calculation process with high detailed windings using FEM 
takes significantly higher amount of time to be completed than using analytic method.  Therefore, the 
previous knowledge of the stray flux behavior is used to simplify the calculations and model only the 
regions that are notably different with respect to losses calculation.  The overall losses are then 
calculated using the results obtained through the regions. 

3. ANALYTICAL APPROACH 

With some modifications, analytical method can still be applied in the cases of phase shift 
between the winding load currents.  The key is to model two different time instants that differ by 90o 
degrees electrical. To test the applicability of the approach, elaborate models based on 2D magnetic FEM 
quasistatic field solution are used first to confirm the overall quality of the skin-effect calculation by 
traditional methods and then to scrutinize the “new” approach that broadens the spectrum of application 
of the analytical software currently in use.  Based on the magnetic field density vector fields obtained in 
the calculation, additional losses are estimated and skin-effect losses are calculated. 

Total power in the windings is calculated using: 

        1 2 ...tot np t p t p t p t       (2) 

In (2), ptot(t) is a time function of power, where p1(t),…, pn(t) are components of power in 
respective windings. These components of power are obtained through the set of equations:  

 

     

     

1 1 1

n n n

p t u t i t

p t u t i t
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 

 (3) 
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where:  u1(t), …, un(t) denote the voltages and  
i1(t), …, in(t) are currents at a time instant t.  
Specifically, in the case of simple harmonic functions of voltage and current the following holds:  

      1 1
1 1 1 1 1 1

cos cos 2
sin sin

2
t

p t U t I t U I
  

  
 

    , (4) 

Where: U1 and I1 are peak values of voltage and current,  
ω is the angular frequency (ω=2πf),  
1 is the phase shift between voltage and current waveforms,  
f is the line frequency.  
The mean value of p1 represents ohmic losses, Pmean1, which can be expressed using relation (5).  

   1 1 1
1 1

cos
2mean

U IP p t 
   (5) 

In general, for each argument α, p1(α) can be expressed as in (6).   

      1 1
1 1 1 1 1 1

cos cos 2
sin sin

2
p U I U I

  
   

 
     (6) 

It is convenient to proceed with calculation for the time instant that differs by 90o degrees 
electrical, i.e. time instants p1(α) and p2(α+π/2): 

 
   

2 1 1 1

1 1 1 1
1 1 1 1

sin sin
2 2 2

cos cos 2 cos cos 2
2 2
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      

               
     

    
 

 (7) 

Careful inspection of relations (6) and (7) reveals that the arithmetic average of these two 
respective functions equals to (5).  Therefore, their mean value Pmean can be modeled using the 
respective powers calculated in two different time instances that are 90 electrical degrees apart, 
regardless of the initial parameter α.  So, without losing the generality, the parameter α can be chosen 
arbitrarily and is usually set to zero. 

  1 2 1 1 1cos
2

P P U I      
 

 (8) 

 
 1 2

1
1 1 1

cos2
2 2mean

P P
P U I

 


   
    (9) 

The important result written in the formula (9) that gives the total mean power (or losses), that is 
in fact independent of parameter α, allows the calculation of the losses in all possible cases of current 
distributions and phase shifts in the windings because the same holds true for Pmean2, Pmean3,...,Pmeann. 
Using the developed approach, the losses in windings for the loading conditions with the phase shift 
between the currents are calculated. The results are given in the table III for each of the main windings 
and overall for one phase of a transformer.  

Table III Ohmic losses in main windings and overall per phase losses calculated using FEM and Rabins’ 
method for the case 4 in Table I. 

 
LV ohmic 

loss in 
W/phase 

HV ohmic 
loss in 

W/phase 

Total ohmic 
loss in 

W/phase 
Analytic 
method 55251 105670 202569 

FEM 56067 105013 202185 
Difference -1.48% 0.62% 0.19% 
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In table IV all the results of the calculated losses are compared using relative and absolute 
differences with respect to FEM calculation. 

Table IV Ohmic loss in different loading conditions calculated using FEM and Rabins’ method. 

Configuration Total ohmic 
loss FEM in kW 

Total ohmic 
loss - analytic 

in kW 

Absolute 
differences in 

kW 

Relative 
differences in 

% 
HV-LV(+) 575.0 575.5 0.50 0.09 
HV-LV(0) 593.7 594.1 0.40 0.07 
HV-LV(-) 804.8 805.8 1.00 0.12 

HV-LV(1)-T 606.6 607.7 1.10 0.18 

4. CONCLUSION 

The comparison of results presented in previous chapter confirms that the simple Rabins’ method 
used in calculation of the stray field and skin-effect losses in the windings can be used in more general 
scenarios with currents with shifted phase angles.  The differences between the FEM method and 
analytic method in the results in such cases are below 0.2% and can be neglected.  The major part of 
these differences is a byproduct of the numerical inaccuracy of the methods used in respective 
approaches.  The analytic method of calculation is more practical with respect to the execution time of the 
process and therefore more suitable for usage in different optimization schemes.   
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