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SUMMARY 

An efficient finite element method to take account of the nonlinearity of the magnetic materials 
when analyzing three dimensional eddy current problems is presented in this paper. The problem is 
formulated in terms of vector and scalar potentials approximated by edge and node based finite element 
basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary 
differential equations in the time domain. 

The excitations are assumed to be time-periodic and the steady state periodic solution is of 
interest only. This is represented in the frequency domain as a Fourier series for each finite element 
degree of freedom and a finite number of harmonics is to be determined, i.e. a harmonic balance method 
is applied. Due to the nonlinearity, all harmonics are coupled to each other, so the size of the equation 
system is the number of harmonics times the number of degrees of freedom. 

The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear 
iteration technique, the fixed-point method is used to linearize the equations by selecting a time-
independent permeability distribution, the so called fixed-point permeability in each nonlinear iteration 
step. This leads to uncoupled harmonics within these steps resulting in two advantages. One is that each 
harmonic is obtained by solving a system of algebraic equations with only as many unknowns as there 
are finite element degrees of freedom. A second benefit is that these systems are independent of each 
other and can be solved in parallel. The appropriate selection of the fixed point permeability accelerates 
the convergence of the nonlinear iteration. 

The method is applied to the analysis of a large power transformer. The solution of the 
electromagnetic field allows the computation of various losses like eddy current losses in the massive 
conducting parts (tank, clamping plates, tie bars, etc.) as well as the specific losses in the laminated parts 
(core, tank shielding, etc.). The effect of the presence of higher harmonics on these losses is 
investigated. 

Key words:  Finite element method, fixed point technique, harmonic balance method, 
nonlinearity, parallel computation 
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1. INTRODUCTION 

The saturation of iron parts of transformers gives rise to the presence of higher harmonics in the 
electromagnetic fields, leading to additional losses. The prediction of these losses is important in the 
design of large power transformers. A method for the analysis of transformer losses has been presented 
in [1] with the assumption of sinusoidal time variation, i.e. neglecting higher harmonics. The present paper 
extends this method for the case of general periodic time variation. 

The most straightforward method of solving nonlinear electromagnetic field problems in the time 
domain by the method of finite elements (FEM) is using time-stepping techniques. This requires the 
solution of a large nonlinear equation system at each time step and is, therefore, very time consuming, 
especially if a three-dimensional problem is being treated. If the excitations are non-periodic or if, in case 
of periodic excitations, the transient solution is required, one cannot avoid time-stepping. In many cases 
however, the excitations of the problem are periodic, and it is only the steady-state periodic solution which 
is needed. Then, it is wasteful to step through several periods to achieve this by the “brute force” method 
[2] of time stepping. 

A time domain technique using the fixed-point method to decouple the time steps has been 
introduced in [3] and applied to two-dimensional eddy current problems described by a single component 
vector potential. The optimal choice of the fixed point permeability for such problems has been presented 
in [4] both in the time domain and using harmonic balance principles. The method has been applied to 
three-dimensional problems in terms of a magnetic vector potential and an electric scalar potential (A,v-A 
formulation) in [5] and, employing a current vector potential and a magnetic scalar potential (T,- 
formulation), in [6] and [7].  

The aim of this work is to show the application of the method to industrial problems arising in the 
design of large power transformers. In this context, the computation of losses due to higher saturation 
harmonics is investigated. 

The paper is structured as follows: In the following two sub-sections of the Introduction, two FEM 
potential formulations of eddy current problems are briefly reviewed and the harmonic balance method to 
obtain their steady state periodic solution is introduced. In section 2, a method is developed to decouple 
the harmonics from each other and hence to solve for each harmonic separately. This is trivial for linear 
problems, but a special fixed point iteration technique is introduced to treat nonlinearity with the 
harmonics decoupled. Section 3 is devoted to a numerical example involving a large power transformer. 
The losses due to higher harmonics are computed and analyzed here. The results of the paper are 
concluded in section 4. 

1.1. Finite element potential formulations 

The electromagnetic field problem to be solved in the eddy current domain c (such as the tank, 
the clamping plates and tie bars as well as some laminates at the core boundary exposed to stray fields) 
is described by Maxwell's equations in the quasi-static limit: 

   0curl curlH J T ,  (1) 

 
 


curl

t
BE ,  (2) 

  0divB ,  (3) 

  0divJ   (4) 

where: H is the magnetic field intensity, J is the eddy current density, T0 is a current vector potential 
whose curl is the given current density in the windings, E is the electric field intensity, B is the flux 
density and t is time. In the insulating region n (such as oil and air domains, the windings, as 
well as laminated parts free of eddy currents) it is sufficient to solve (1) with J=0 in addition to (3) 
for the magnetic field quantities. The material relationships are 

  B H H  or  H B B   (5) 

 J E  or E J   (6) 
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where:   is the permeability,  is its reciprocal, the reluctivity and  is the conductivity with  denoting its 
reciprocal, the resistivity. In magnetic materials (steel), the relationships (5) are nonlinear, i.e. the 
permeability and the reluctivity depend on the magnetic field intensity or the magnetic flux density 
as indicated. 

The numerical solution of the problem is carried out by the method of finite elements. The 
application of FEM is straightforward if potential functions are introduced. Basically, two options are open: 
the field quantities can either be represented by a magnetic vector potential A and an electric scalar 
potential v (A,v-A formulation) as 

  
      


 in ,  in c n ccurl gradv

t
B A E A ,  (7) 

or by a current vector potential T and a magnetic scalar potential  (T,- formulation) as 

        0  in ,  in c n cgrad curlH T T J T   (8) 

with T=0 in n. The definitions (7) satisfy (2) and (3), whereas those in (8) ensure that (1) and (4) 
hold. Therefore, the differential equations (1) and (4) are to be solved in the A,v-A formulation: 

     
     0curl curl gradv curl

t
A A T ,  (9) 

 
       

0div gradv
t

A ,  (10) 

and the Maxwell's equations (2) and (3) 

         
        0curl curl grad

t t
T T T ,  (11) 

           0div grad divT T   (12) 

remain to be solved in the T,- formulation. 

Introducing the edge based vector basis functions Ni(r) (i = 1, 2, ..., ne) and the node based scalar 
basis functions Ni(r) (i = 1, 2, ..., nn) in the finite elements (ne is the number of edges and nn the number of 
nodes in the finite element mesh, r denotes the space coordinates),  the potentials are approximated as 

                
 

    
1 1

, , , , ,
e en n

h k k h k k
k k

t t a t t t t tA r A r N r T r T r N r ,  (13) 

                
 

      
1 1

, , , , ,
n nn n

h k k h k k
k k

v t v t v t N t t t Nr r r r r r .  (14) 

The vector T0 is represented by edge basis functions similarly to T in (13). The coefficients for T0 
are easily computed as its line integrals along the edges of the finite element mesh. 

Applying Galerkin techniques to (9) and (10) leads to the following ordinary differential equations 
for the A,v-A formulation: 

   
  

          
c c c

i h i h h i
dcurl curl d gradv d curl d
dt 0N A N A N T ,         i=1,2,...,ne, (15) 

  
 

    0
n c

i h h
d gradN gradv d
dt

A ,                                                   i=1,2,...,nn. (16) 

Gathering the unknown time functions ak(t) (k = 1, 2, ..., ne) and vk(t) (i = 1, 2, ..., nn) in (13) and 
(14) in a vector x(t), the matrix form of (15), (16) is the system of ordinary differential equations  

                
d t

t t t
dt
x

S x x M f   (17) 
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where:  the dependence of the stiffness matrix S on  and of the mass matrix M on  is explicitly shown. 
Since the reluctivity depends on the field,  depends on x and hence on t as indicated. The right 
hand side vector is denoted by f. 

In a similar manner, Galerkin's method applied to (11) and (12) results in the ordinary differential 
equations 

    
  

            
c c c

i h i h h i
d dcurl curl d grad d d
dt dt 0N T N T N T ,      i=1,2,...,ne, (18) 

   
   

        
n c n c

i h h i
d dgradN grad d gradN d
dt dt 0T T ,               i=1,2,...,nn (19) 

for the T,- formulation. The vector x(t) now consists of the unknown time-dependent 
coefficients tk(t) (k = 1, 2, ..., ne) and k(t) (k= 1, 2, ..., nn) in (13) and (14). The matrix form of the Galerkin 
equations is the system of ordinary differential equations 

                    ,d dt t t t t
dt dt

S x M x x g x   (20) 

where:  the stiffness matrix S is now independent of x and hence of time, but the mass matrix M depends 
on the permeability which is itself field- and time-dependent. The product of the mass matrix and 
the unknown vector is differentiated with respect to time. The excitation vector g depends on x 
and t, and its time-derivative appears on the right hand side. 

1.2. Harmonic balance method 

The right hand side vectors of the systems of ordinary differential equations (17) and (20) are 
time periodic, i.e.     t t Tf f  and      , ,t t Tg g  where T = 1/f is the period determined by the 
frequency f of the excitation, i.e. of the winding currents of the transformer. Since we are only interested 
in the steady state periodic solution satisfying the periodicity condition     t t Tx x , the solution is 
approximated by a complex Fourier series with N harmonics as 

      



 
   

 


1
Re

N
jk t

N k
k

t t ex x X   (21) 

where:  j is the imaginary unit, 
Fourier coefficient of the k-  It can be computed as 

        
0

1 T
jk t

k k t e dt
T

X x xF .  (22) 

Setting the approximation (21) into (17) and (20), respectively, and computing the N Fourier 
coefficients of both sides, a system of equations  with N times as many unknowns is obtained as there 
are unknown time-functions, i.e. degrees of freedom, in x(t): 

             m N N m mjmS x x M X fF F ,                                m = 1, 2, ..., N, (23) 

                       
,m m N N m N

d d t
dt dt

S X M x x g xF F ,         m = 1, 2, ..., N. (24) 

In the linear terms in (23) and (24), the Fourier coefficients of the m-th harmonic appear only. The 
time derivative in (17) corresponds to a multiplication by jm in (23). The right hand side of (23) can be 
computed directly from f as shown in (22). On the other hand, the nonlinear terms containing the 
permeability (xN) or the reluctivity (xN) depending on the unknown solution (21) couple all Fourier 
coefficients to each other. Therefore, due to the nonlinearity, one cannot solve for each harmonic alone, a 
fact which significantly increases the complexity of the problem. 
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2. DECOUPLING OF HARMONICS  

It is highly desirable that the harmonics be decoupled and hence be determined independent of 
each other. This would lead to N systems of equations, each with as many unknowns as there are 
degrees of freedom in the FEM approximation. As shown below, the decoupling is trivial in the linear case 
but, for nonlinear problems, special techniques are needed. 

2.1. Linear problems 

If the permeability and the reluctivity are independent of the magnetic field, the systems of 
ordinary differential equations (17) and (20) become linear, since S in (17) and M in (20) do not depend 
on x(t). Hence, the Fourier coefficients indicated by Fm in (23) and (24) become 

                                
, , ,m N m m N m m m

d djm t jm
dt dt

S x S X M x M X g gF F F F  (25) 

Hence, (23) and (24) indeed become decoupled, each harmonic can be determined 
independently: 

            m mjmS M X fF ,                    m = 1, 2, ..., N,  (26) 

             m mjm jmS M X gF ,            m = 1, 2, ..., N.  (27) 

The right hand side vectors in (26) and (27) can be easily computed by traditional Fourier 
decomposition as in (22). 

2.2. Fixed point iteration technique for nonlinear problems 

The fixed point iteration method for the solution of nonlinear equations reduces the problem to 
finding the fixed point of a nonlinear function. The fixed point xFP of the function G(x) is defined as 

  FP FPx G x .  (28) 

The fixed point can be determined as the limit of the sequence 

       1s sx G x ,       s = 0, 1, 2, ... ,  (29) 

provided G(x) is a contraction, i.e. there exists a contraction number   1 1q  so that for any x and y 

      qG x G y x y   (30) 

where:   is a suitable norm. Furthermore, the sequence (29) converges to the same fixed point 

independent of the choice of the initial guess (0)x . 

A general nonlinear equation F(x)=0 can be transformed to a fixed point problem by selecting a 
suitable linear operator A and defining G as 

      1G x x A F x .  (31) 

The fixed point iterations (29) then become 

             1s s s s sA x A x F x ,     s = 0, 1, 2, ...  (32) 

where:  the superscript s of  sA  indicates that the linear operator A can be changed at each iteration step 
to accelerate convergence. 

In case of the ordinary differential equations (17) and (20) obtained by Galerkin FEM techniques, 
the selection of a linear operator is straightforward: the permeability or reluctivity has to be set to a value 
independent of the magnetic field. This value, FP or FP, is not necessarily independent of the space 
coordinates r, i.e. generally   FP FP r  or   FP FP r  are permeability or reluctivity distributions 
varying in the problem domain but independent of the field and hence of time. By the same argument as 
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the one used for the linear operator A above, FP or FP can also change at each iteration step. This fixed 
point permeability or reluctivity function will be denoted by   s

FP  or   s
FP  below. 

Once a suitable fixed point permeability or reluctivity has been selected, (17) and (20) can be 
iteratively solved by obtaining    1s tx  from the equations 

         
                 


     
1

1  0, 1, 2, ...
s

s s s s s
FP FP

d t
t t t s

dt
x

S x M S x f  (33) 

                                        
1 1 ,  0, 1, 2, ...s s s s s s s

FP FP
d d dt t t t s
dt dt dt

S x M x M x g  (34) 

 

at each step. The permeability or reluctivity distribution   s  or   s

 are determined from the 

solution    s tx  i.e., in contrast to   s
FP  or   s

FP , they are time dependent. The stiffness matrix S on the right 

hand side of (33) is obtained with  replaced by     s s
FP and the mass matrix M on the right hand side of 

(34) is computed with     s s
FP  written instead of . Indeed, these matrices depend linearly on  and , 

respectively. 

Since (33) and (34) are linear ordinary differential equation systems, they can be solved by the 
harmonic balance method with decoupled harmonics as in (26) and (27). The corresponding equations to 
be solved for s = 0, 1, 2, ... are: 

                                
1s s s s s

FP m m FPjm t tS M X S x fF ,….m = 1, 2, ..., N, (35) 

                                   
1 ,s s s s s s

FP m m FPjm jm t tS M X M x gF ,….m = 1, 2, ..., N (36) 

where:    s tx  is obtained from the harmonics similarly to (21) as 

        



 
  

 


1
Re

N
s s jk t

k
k

t ex X .  (37) 

The nonlinear iterations are terminated once the change of   s  or   s

 between two iteration 
steps becomes less than a suitable threshold.  

The most computational effort is needed for the solution of the N linear equation systems in (35) and 
(36), respectively. Since these are independent of each other, they can be solved parallel with each core 
responsible for the solution for one harmonic  1s

mX . Once these parallel computations are ready, the right 
hand side for the next iteration can be determined by first computing the time function of the solution as in (37) 
and then carrying out the Fourier decompositions indicated in (35) and (36). This is the part of the process 
when no parallelization is possible, but since the computational effort necessary for it is negligible in 
comparison to the solution of the large linear algebraic systems, the method is massively parallel. 

One of the most important factors influencing the rate of the convergence of the fixed point 
technique is the choice of the fixed point permeability or reluctivity. As pointed out above, this is not 
necessarily constant with respect to the space coordinates, i.e. it can be selected to be different at each 
Gaussian integration point of the finite element mesh. The analysis of the optimal choice has been carried 
out in [4], the result for   s

FP  below is taken from there: 

   

 

 

       




       

       
 
  





2

0, 0,0

0

min max
max ,

2

T
s s s

t T t Ts
FP T

s

dt

dt
. (38) 
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The optimal fixed point reluctivity is obtained in a similar way. The permeability   s  and the 

reluctivity   s are functions of the space coordinates and also of time since they are determined by the 
magnetic field distribution, itself space and time-dependent. According to (38), the fixed point permeability 
depends on the space coordinates but not on time. The computational effort necessary for the evaluation 
of (38) in each nonlinear iteration step is negligible. 

3. COMPUTATION OF TRANSFORMER LOSSES 

The eddy current losses of a transformer can be obtained by integrating the Joule loss density 
computed from the current density distribution. The current density can be computed from the potentials 
as shown in (6) and (7) in case of the A,v-A formulation and as given in (8) for the T,- formulation. 
Since the potentials are provided as Fourier series of the form (21) by the harmonic balance method 
presented, the current density is obtained as 

     



 
  

 


1
, Re

N
jk t

k
k

t eJ r J r   (39) 

where: Jk(r) is the complex amplitude of the k-th harmonic of the current density. Hence, the eddy current 
losses are obtained as 

  
   
  

 
    
 
 

  
2 2

10

,1 1
2

c c

T N
k

eddy
k

t
P d dt d

T
J r J r

.  (40) 

The iron losses can be computed by integrating the specific losses per unit volume given as a 
function  p B  of the flux density provided by the manufacturer as described in [1] for the case of 
sinusoidal time variation. In fact, the specific losses are customarily given for unit weight but multiplying 
them by the specific weight yields the losses per unit volume. Usually, the specific losses are measured 
for one single frequency f0 (e.g. f0=50 Hz), this is denoted by  0,p fB . In order to approximately take 
account of the dependence of the specific losses on frequency, the following algorithm is adopted. It is 
assumed that 

        2, cl hystp f p f p fB B B   (41) 

where:   


2 2
2

6cl
dp B B , (d is the thickness of the laminates, see [8]). Hence,  hystp B  can be 

obtained as 
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 

2 2
2 2

0 0
0
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dp p f f
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and, finally, 
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2 2 2 2
2 22 2
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f
B B B B .  (43) 

 

Similarly to the current density, the magnetic flux density is also obtained in the form of a Fourier 
series when using the harmonic balance technique: 

      



 
  

 


1
, Re

N
jk t

k
k

t eB r B r .  (44) 

 

In lack of any better assumption, the specific losses are simply computed for each harmonic from 
(43) and then added: 

O. Bíró, U. Baumgartner, G. Koczka, G. Leber, B. Wagner, Finite element method for nonlinear eddy current problems in power transformers, Journal of 
Energy, vol. 61 Number 1–4 (2012) Special Issue, p. 87-96



94

8 

    
 

 
1

, 2
N

iron k
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P p k dB .  (45) 

As an example, the autotransformer analyzed in [1] is presented here. Its name plate data are 
given in Table I. 

Table I- Name Plate Data of a Single-phase  
Autotransformer 

Rated Power 450/450/85 MVA 
System Voltage 500/√3//230√3//13.8 kV 
Rated Current 1559/3389/6159 A 

The FEM model used has been improved in comparison to [1], it consists of 334,110 finite 
elements. The problem has been solved using the T,- formulation, resulting in 2,217,625 degrees of 
freedom for the potentials. The model is shown in Fig. 1. 

 
Figure 1 - FEM model of the analyzed single-phase autotransformer. The model comprises one half of the 

transformer. The tank is shown transparent, the core is yellow, the clamping plates and the tie bars are 
shown green. The windings and the tank shieldings are red. 

Two short circuit computations have been carried out with the winding currents taken to be 
sinusoidal and the magnetization current neglected. In one of them, the method of [1] assuming 
sinusoidal time variation for all field quantities has been used and, in the second one, the harmonic 
balance method of the present paper using N=9 harmonics has been employed (only odd harmonics 
appear in the field quantities). The losses have been computed as described above. The computed 
losses in the two cases are summarized in Tables II and III, given as a percentage of the total measured 
short circuit losses. 

Table II - Losses in Percentage of Total Measured Losses of Autotransformer Analyzed.  
All Quantities are Sinusoidal 

DC copper losses (measured) 66.92% 
AC copper losses (computed from 2D FEM) 21.75% 
Tank (computed from model presented) 3.76% 
Clamping plates (computed from model presented) 2.80% 
Tie bars (computed from model presented) 0.21% 
Tank shielding (computed from model presented) 0.51% 
Core (computed from model presented) 2.75% 
Total 98.70% 
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Table III- Losses in Percentage of Total Measured Losses of Autotransformer Analyzed. 
Harmonics up to the 9th are taken into Account 

DC copper losses (measured) 66.92% 
AC copper losses (computed from 2D FEM) 21.75% 
Tank (computed from model presented) 2.55% 
Clamping plates (computed from model presented) 2.08% 
Tie bars (computed from model presented) 0.18% 
Tank shielding (computed from model presented) 0.97% 
Core (computed from model presented) 6.05% 
Total 100.50% 

 

 
Figure 2 – Magnetic flux density in the core at the time instant of maximal winding current 

These results indicate that in parts of the transformer where significant saturation is present, like 
in the first laminates of the core exposed to stray magnetic fields (see Figure 2), the losses due to the 
higher harmonics are considerable. 

4. CONCLUSION  

It has been shown that the use of FEM in conjunction with the harmonic balance method is 
capable of providing the solution to large, complex real-world problems with higher harmonics due to 
nonlinearity allowed for, and can hence be incorporated in the design cycle of large transformers. Taking 
account of the additional losses due to the higher harmonics in strongly saturated parts of the transformer 
improves the agreement of the computed losses with measurements. 
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