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DETAILED MATHEMATICAL AND SIMULATION MODEL OF A 
SYNCHRONOUS GENERATOR 

 

 
 SUMMARY 

 

Synchronous generator theory has been known since the beginning of its use, 
but the modelling and analysis of synchronous generators is still very existent in 
the present-day. Modern digital computers enable development of detailed 
simulation models, thus individual power system elements, including synchronous 
generators, are represented by the highest degree order models in power system 
simulation software packages. In this paper, first, a detailed mathematical model of 
a synchronous generator is described. Then, a simulation model of a synchronous 
generator developed based on the presented mathematical model. Finally, a 
transient stability after a short-circuit is simulated using real generator 
parameters. 
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1. INTRODUCTION 
 

In electric power system (EPS) simulation software packages today, 
individual elements can be represented by the models of the highest order of 
accuracy. By the virtue of state-of-the-art digital computers, in many cases it is not 
necessary to use simplified and reduced order models based on numerous 
assumptions anymore. In spite of this, using the most detailed mathematical 
models does not guarantee the quality and credibility of calculation results. The 
cause of unsatisfactory results is usually the lack of sufficiently accurate values of 
parameters on which a certain model is based on. Generally, the more detailed the 
mathematical model is, the more parameters it requires to be known. As many data 
for power system calculations (e.g. transient stability, short-circuit, power flow, etc.) 
are usually hard to obtain, it is clear that it isn’t always the best solution to use the 
most detailed mathematical models. Equipment manufacturers usually provide 
data about the most of needed parameters, e.g. of synchronous generators, but there 
are a lot of older generators in the operation today for which it is difficult to 
determine even the most basic parameters such as synchronous reactance or exciter 
forced voltage. 

Different power system calculations have very different purposes so the 
demands on accuracy are different as well—from tuning of the protection relays or 
automatic regulators to analysis of assumed operational scenarios. The issue of 
detailed modelling, primarily of generators and turbines, and their control systems 
is especially accentuated in stability calculations. Detailed nonlinear models of 
generators are described in [1-4]. The most popular is simplified linearized third 
order model, used by Demello and Concordia [5]. This model is further developed in 
[6] for small-signal stability analysis. Automatic voltage regulator (AVR) with 
voltage control loop essentially changes the synchronous generator dynamics. In [7], 
extended state-space model including the effects of excitation system and generator 
amortisseurs is used. In this paper the influence of excitation system is not 
considered and focus is only on generator model. The impact of generator modelling 
complexity is the subject of many transient stability studies, such as [8-11]. 

When modelling the synchronous generator, the rest of the EPS is usually 
replaced with an infinite bus. When researching stability of a generator working in 
a multi- machine system where the total power is a lot larger than the power of the 
individual generator (along with a strong grid), only the impact of a short-circuit 
close to the generator terminals is analysed. As the length of a transient is 
relatively short (2 s do 5 s), physical properties of the analysed machine have the 
prevailing impact on the properties of machine swing response. 

 

2. SYNCHRONOUS GENERATOR MODEL 
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Although the theory of synchronous generator has been known since the 
beginning of its application, the research of modelling and analysis of synchronous 
generators is still very much ongoing. Mathematical description of 
electromechanical systems operation such as synchronous generator generally leads 
to a system of differential equations which is regularly nonlinear due to the 
multiplication of state variables. With the increase of computing power, the 
capabilities for modelling and analysis are increased as well. This has resulted in a 
large number of models that differ depending on the type of research they are 
intended for and on the degree of desired accuracy. 

There are different approaches when developing a mathematical model and 
the corresponding simulation model of a synchronous generator. The most common 
approach is based on general two-reaction theory upon which a three-phase winding 
of a generator is substituted by one equivalent, fictitious two-phase winding 
projected onto the direct (d) and quadrature (q) rotor axis. The field winding is 
represented as a d-axis winding and the reaction of damper winding caused by the 
eddy currents in the cylindrical rotor is substituted by fictitious windings in d-axis 
and q-axis. 

 

3. PARK’S TRANSFORMATION 
 

Mathematical description of a synchronous generator can be significantly 
simplified with proper variable transformation. One of the possible stator variables 
(currents, voltages, fluxes) transformation is known as Park’s or d-q transformation. 
The number of variables after a transformation generally remains the same and in 
general case, substitution with new variables should be observed as a completely 
mathematical operation, thus no physical interpretation of fictitious is necessary. In 
this case, according to [1], the applied transformation can be physically interpreted 
because the new variables are obtained by projecting the real variables onto the 
three axes (direct, quadrature and stationary): 
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Current id can be imagined as a current through a fictitious winding which 
rotates with the same speed as rotor windings and has such position that its axis 
always aligns with the field winding axis. The magnitude of current in this fictitious 
winding will be such that it will induce a magnetomotive force in the d-axis equal to 
the sum of magnetomotive forces in real phase windings. The current iq can be 
imagined in the same way, but the difference is that the axis of the fictitious 
winding aligns with the neutral axis of the rotor. Current i0 is identical to the zero-
sequence current component and it exists only when the sum of phase currents is 
different than zero. Zero-sequence is not considered in the generator analysis so the 
two-reaction representation is simplified which facilitates the setting of generator 
equations. 

Park’s transformation is unique, thus an inverse transformation 1−P  exists as 
well, defined as: 

 dqabc 0
1 iPi −=   (4) 

 































 +






 +







 −






 −=−

3
2sin

3
2cos

2
1

3
2sin

3
2cos

2
1

sincos
2

1

3
21

πϑπϑ

πϑπϑ

ϑϑ

P   (5) 

Coefficient  
3
2  is chosen such that  tPP =−1  which means Park’s 

transformation is orthogonal. 

 
4. VOLTAGE EQUATIONS 

 

Figure 1 shows rotor and stator windings of a three-phase synchronous 
generator. The considered synchronous generator has three stator windings (a, b, c), 
a field winding (F) and two fictitious windings, one in d-axis (D) and on in q-axis (Q) 
which substitute the reaction of damper windings or dampening caused by eddy 
currents in a cylindrical rotor. These six windings are magnetically linked, and flux 
linkages are a function of the rotor position. 

Voltage equations for these six linked circuits can be written in a matrix 
form: 
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Figure 1. Synchronous generator windings 

 

By applying Park’s transformation, (6) becomes 
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By substituting for flux linkages 
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 As only balanced three-phase systems are usually analysed, the zero-
sequence equations are usually omitted. By row-switching in order to group d-axis 
variables together and q-axis variables together, voltage equations (10) become 
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5. ROTOR SWING EQUATION 
 

Rotor swing equation is usually written in the following form: 

 em
m MM

dt
dJ −=
ω   (12) 

where J is the moment of inertia (kg⋅m2), ωm is the mechanical angular velocity 
(rad/s), Mm is the mechanical torque (Nm), Me the electrical torque (Nm). Difference 
between mechanical and electrical torque is called an accelerating torque. Equation 
(12) can be written in terms of power instead of torque: 

 emm
m PP

dt
dJ −=ωω   (13) 

Electrical angular velocity is usually used instead of mechanical angular 
velocity. The relation between mechanical and electrical velocity is given by 

 mpωω =   (14) 

where p is the number of pole pairs. It can be shown [1] that by substituting 
mechanical angular velocity with electrical angular velocity and by introducing per-
unit values instead of real values, (12) becomes 

 em
R

MM
dt
dH

−=
ω

ω
2   (15) 

where H is an inertia constant (MWs/MVA), ωR is the rated electrical speed (rad/s), 
ω is the electrical angular velocity (rad/s), while mechanical and electrical torque 
are in per-unit (p.u.). With the assumption that angular velocity ω is approximately 
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constant, the accelerating power is numerically approximately equal to the 
accelerating torque (p.u.). Thus, the swing equation can be written as 

 PP
dt
dH

m
R

−≅
ω

ω
2   (16) 

Rated speed ωR is equal to 

 RR fπω 2=   (17) 

where fR is the nominal frequency (Hz), thus (16) can be written as 

 ( )em
R PP

H
f

dt
d

−=
πω   (18) 

The generator swing equation is written in the form of (18). In the case of 
small disturbances the swing equation could be written as transfer function 

 
Hsmm em 2
1

=
∆−∆

∆ω   (19) 

where is s the Laplace operator [12]. 

 
6. ELECTRICAL POWER AND ELECTRICAL TORQUE 
 

Power at the three-phase synchronous generator’s terminals is generally 
calculated as 

 abc
t
abcccbbaae ivivivP iv=++=   (20) 

By applying Park’s transformation on currents and voltages in (20), while 
keeping in mind that the transformation is orthogonal, the expression for generator 
power expressed in terms of new voltage and current variables is given as 

 00ivivivP qqdde ++=   (21) 

As only balanced three-phase systems are usually observed, the expression 
(21) simplifies to 

 qqdde ivivP +=   (22) 

By substituting expressions for vd and vq from voltage equations the power 
equation becomes 

 )()()( 22
qdqddqqqdde iiriiiiP +−−++= ωψψψψ    (23) 
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From this, by using certain assumptions, the simplified expression for an 
electric torque of a synchronous generators is obtained 

 qddqe iiM ψψ −=   (24) 

which is usually used when modelling a synchronous machine. 

 

7. EQUIVALENT CIRCUIT OF A SYNCHRONOUS GENERATOR 
 

By expanding equation (9) for flux linkages, it can be shown that flux 
linkages of mutual inductances can be written as: 

 )()( DFdADDDFFdddAD iiiLikMikMlLi ++=++−=ψ   (25) 

  )()( QqAQQQqqqAQ iiLikMlLi +=+−=ψ   (26) 

where LAD and LAQ are magnetizing inductances of windings in d and q axes. 

 RDFddFFDDAD MkMkMlLlLlLL ===−=−=−≅   (27) 

 QqqQQAQ kMlLlLL =−=−≅   (28) 

Expressions (25) and (26) for flux linkages of mutual inductances can be 
represented by current injection in the magnetizing branch, Figure 2. In order to 
obtain a complete equivalent circuit, it is necessary to consider voltage equations. 
From (8), for d-axis windings, the following expressions are obtained: 

 qDFdADddd iiiLilirv ωψ−++−−−= )(    (29) 

 )( DFdADFFFFF iiiLilirv  ++−−−=−   (30) 

 0)( =++−−−= DFdADDDDDD iiiLilirv    (31) 

 
Figure 2. Flux linkages inductances of a synchronous generator 

These voltage equations are represented by an equivalent circuit shown in 
Figure 3. The three circuits (d, F and D) in the d-axis are connected by the mutual 
inductance LAD through which a sum of currents id, iF and iD is flowing. A voltage 
source ωψq is included in the d-axis stator winding circuit. 

AQLQq ii +
Qi qi

ADL
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di
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Figure 3. Equivalent circuit of d-axis 

Voltage equations for q-axis windings are as follows: 

 dQqAQqqq iiLilirv ωψ++−−−= )(    (32) 

 0)( =+−−−= QqAQQQQQQ iiLilirv    (33) 

and from these equations, the equivalent circuit of q-axis is constructed 
shown in Figure 4. Just like in d-axis, the sum of currents also flows through the 
magnetizing branch and a voltage source ωψd exists in the q-axis winding circuit. 

 
Figure 4. Equivalent circuit of q-axis 

 

8. FLUX LINKAGES STATE SPACE MODEL OF A GENERATOR 
 

It can be shown that the following relations between currents and flux 
linkages result from (9): 

d-axis: 
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d l
i ψψ −=

1   (34) 

Fi
didl

Fl
r

Fr

0=Dv
-

+

-

+

- +

qωψ

dv

Fv
-

+

Dr
Dl

Di
ADL

DFd iii ++

Qi

qiqlQl rQr

0=Qv
-

+

-

+

- +

dωψ

qvAQLQq ii +

M. Brezovac, I. Kuzle, M. Krpan, Detailed mathematical and simulation model of a synchronous generator, Journal of Energy, vol. 64 Number 1–4 
(2015) Special Issue, p. 102-129



112

11 
 

 ( )ADF
F

F l
i ψψ −=

1   (35) 

 ( )ADD
D

D l
i ψψ −=

1   (36) 

where 

  D
D

MD
F

F

MD
d

d

MD
AD l

L
l

L
l

L ψψψψ ++=  (37) 

with equivalent d-axis inductance defined as: 

 
DFdADMD lllLL
11111

+++=   (38) 

q-axis: 

 ( )AQq
d

q l
i ψψ −=

1   (39) 

 ( )AQQ
Q

Q l
i ψψ −=

1   (40) 

where 

 Q
Q

MQ
q

q

MQ
AQ l

L
l

L
ψψψ +=   (41) 

with equivalent q-axis inductance defined as 

 
QqAQMQ llLL
1111

++=   (42) 

The expressions for flux linkages result from voltage equations (6): 

d-axis: 

 dqAD
d

d
d

d v
l
r

l
r

−−+−= ωψψψψ   (43) 

 FAD
F

F
F

F

F
F v

l
r

l
r

++−= ψψψ   (44) 

 AD
D

D
D

D

D
D l

r
l
r ψψψ +−=   (45) 

q-axis: 
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 qdAQ
q

q
q

q v
l
r

l
r

−++−= ωψψψψ   (46) 

 AQ
Q

Q
Q

Q

Q
Q l

r
l
r

ψψψ +−=   (47) 

 

9. LOAD EQUATIONS 
 

Equations (11), (15) and (24) represent a detailed model of a synchronous 
machine where the currents are state variables. With the assumption that vF and 
Mm are known, the aforementioned system of equations does not completely describe 
the synchronous generator as long as the unknown variables vd and vq are not 
expressed in terms of state variables id and iq. The prerequisite for this is known 
conditions at the machine’s terminals, i.e. the load at the infinite bus must be taken 
into account as well as the value of impedance between the generator and the grid. 

There are different ways to represent the load: constant impedance, constant 
power, constant current or any of the possible combinations of these three. For 
generator modelling, the load representation that will define relations between 
voltages, currents and angular velocity (load angle) obtained by solving the load 
flow is required. To simplify the generator model analysis, the rest of the electric 
power system is replaced by an infinite bus, thus the system influence is reduced to 
an impedance, and magnitude and angle of the voltage phasor at the infinite bus. 

For a generator connected to an infinite bus via step-up transformer and a 
transmission line of equivalent resistance Re and inductance Le, the terminal voltage 
of the generator is calculated as 
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  (48) 

The infinite bus voltage is a balanced three-phase voltage 
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where 
∞V  is the RMS value of the grid voltage.  

It can be shown that by using Park’s transformation and (50) 

 2/πδωϑ ++= tR   (50) 

expression (49) becomes 
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thus, the expression (48) in 0dq system is as follows: 
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10. BLOCK DIAGRAM OF A SYNCHRONOUS GENERATOR 
 

To develop a corresponding block element based simulation model from a 
certain mathematical mode, the mathematical model must be represented by a 
block diagram. Detailed nonlinear model of a synchronous generator in a block form 
is shown in figures 5 through 8. 

 
Figure 5. Complete generator system block diagram 

0

0

vq

ω

ψd

ψAQ

ψq

vQ

ψAQ
ψQ

vd

ω

ψq

ψAD

ψd

vF

ψAD
ψF

vD

ψAD
ψD

ψF

ψD

ψq

ψQ

ψd

ψΑQ

ψΑD

id

iq

iF

θ vq

vdvabc

θ

iq

id
iabc

i0

vabc

vF

Pe

ψq

ψd

Pe

ω

id

iq

Pm

θ

iF

0

iabc

Pm

M. Brezovac, I. Kuzle, M. Krpan, Detailed mathematical and simulation model of a synchronous generator, Journal of Energy, vol. 64 Number 1–4 
(2015) Special Issue, p. 102-129



115

14 
 

 
Figure 6. Calculation of currents and flux linkages of mutual inductances 
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Figure 7.  Calculation of flux linkages 
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Figure 8. Mechanical part of the generator and electric power calculation 

 

11. SYNCHRONOUS GENERATOR PARAMETERS 
 

Data acquisition necessary for calculations and parameter determination is 
an important step in the modelling process. Sometimes, acquiring even the most 
basic generator and corresponding control systems data can present a huge 
obstacle, especially when dealing with older machines that are still in operation. 
Thus, generator models with standard parameters are often used, i.e. reactances 
and time constants identified for the equivalent circuits in the d and q axis which 
are given by most generator manufacturers. Standard parameters are being used 
for the detailed generator model presented in this paper. 

12. Standard generator parameters 
 

During a disturbance in the rotor circuits, certain currents are induced under 
the terms of which some of them diminish more quickly than the others. Thus, the 
following generator parameters differ: 

− subtransient – determine the quickly diminishing components,  
− transient – determine the slowly diminishing components,  
− synchronous – determine the constant (steady) components 

Standard generator parameters are reactances as seen from generator 
terminals associated with fundamental frequency during steady-state, transient 
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and subtransient states along with corresponding time constants that determine 
the currents and voltages falloff gradient. 

Besides reactances and time constants as standard generator parameters, it 
is also necessary to know the inertia constant H which determines the dynamic 
behaviour of the turbine-generator. The value of the inertia constant (MWs/MVA) 
can be determined using (53) 

 
n

m

S
JH

2

2
1 ω

=   (53) 

where J is the moment of inertia of the turbine-generator (t⋅m2), ωm the 
(nominal) mechanical speed of the shaft (rad/s), Sn the volt-ampere base of the 
turbine-generator, usually the nominal apparent power (kVA). Moment of inertia 
describes the influence of the total rotating mass of the turbine-generator consisting 
of rotating mass of the turbine and rotating mass of the generator, while the 
contribution of the water mass must also be considered when dealing with 
hydroelectric turbines. 

 

13. DETERMINING THE MODEL PARAMETERS FROM STANDARD 
GENERATOR PARAMETERS 
 

Calculation of rotor mutual inductances is done according to the equivalent 
circuits (Figure 3 for d-axis, Figure 4 for q-axis) and by utilizing (27) and (28). 

 
Figure 9. Equivalent circuit for d-axis inductance: (a) transient, (b) subtransient 

d-axis transient inductance according to Figure 9a is given by 
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FAD

FAD
dd lL

lLlL
+

+='   (54) 

from which the field winding leakage inductance can be expressed as 

 
'

'

dd

dd
ADF LL

lLLl
−
−

=   (55) 

Similarly, according to Figure 9b, d-axis subtransient inductance is given by 

 
FDAD

dd llL
lL

/1/1/1
1''

++
+=   (56) 

from which the d-axis damper winding leakage inductance can be expressed as 

 
)''(

''

ddFFAD

dd
FADD lLLlL

lLlLl
−−

−
=   (57) 

Finally, d-axis damper windings inductance and field winding inductance are 
given by 

 DADD lLL +=   (58) 

 FADF lLL +=   (59) 

 
Figure 10. Equivalent circuit for q-axis subtransient inductance 

 

Analogously for the q-axis, from Figure 10 follows: 
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From which the q-axis damper winding leakage inductance is expressed as 
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and then the q-axis damper winding inductance is given by 

qlQl

''qLAQL
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 QAQQ lLL +=   (62) 

It can be shown that the field winding resistance and the damper windings 
resistance can be determined from aforementioned reactances by using the 
following expressions: 
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where the time constants are in (s). 

Time constants of short-circuited windings are given by 

 
'
'''''' 0

d

d
dd L

LTT =   (66) 
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q

q
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L
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where subscript 0 denotes open circuit time constants. 

 

14. SYNCHRONOUS GENERATOR PARAMETERS 
 

Synchronous generator model described in chapter 2 represents a system of 
time dependent differential equations. In steady-state, differential equations 
disappear because all magnitudes are constant. Stability analysis of some system 
generally begins from a steady state of that system. Then, a disturbance is applied 
and dynamic behavior is then observed. 

Phasor diagrams are usually used to display steady-state relations as shown 
in Figure 11. Figure 11 displays the phasor diagram for the developed generator 
model connected to an infinite bus through impedance  ee XjR + . 

Steady state can be defined in multiple ways. The most common way is 
defined by conditions at the generator terminals—voltage, active and reactive 
power. In this case, the power factor is calculated as 
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22

cos
QP

P
+

=ϕ   (69) 

where P and Q are initial active and reactive power, respectively. 

To calculate d-axis and q-axis components of currents and voltages of the 
generator and of the grid voltage, angles δ, β and ϕ (see Figure 11) have to be 
known. δ and β are determined from the phasor diagram and ϕ is determined from 
the power factor. 

First, generator current is calculated: 

 
ϕcosV

PI =   (70) 

Then, active and reactive component of generator current are calculated: 

 ϕcosIIr =  ϕsinII x −=   (71) 

 
Figure 11. Generator phasor diagram 

 

Angle between q-axis and terminal voltage vector is calculated by 
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=− arctanβδ   (72) 

d-axis and q-axis components of generator currents and terminal voltage: 

 ( )ϕβδ +−−= sinIId  ( )ϕβδ +−= cosIIq   (73) 

 ( )βδ −−= sinVVd  ( )βδ −= cosVVq   (74) 

Induced EMF and excitation current: 
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 ddqq IxrIVE −+=   (75) 

 
AD

F L
EI =   (76) 

Flux linkages: 

 FADddd ILIL +=ψ   (77) 

 FFdADF ILIL +=ψ   (78) 

 ADFdD LII )( +=ψ   (79) 

 qqq IL=ψ   (80) 

 qAQQ IL=ψ   (81) 

 

 
Figure 12. Phasor diagram of generator terminal voltage and grid voltage 

Grid voltage vector equation: 

 IZVV e−=∞   (82) 

According to Figure 12, (82) can be expressed as follows: 

 ))sin()(cos()( ϕϕβα −+−−=−∠∞ jIZVV e   (83) 

From (83), grid voltage ∞V and angle difference βα −  can be determined. Load 
angle (angle between grid voltage vector and q-axis) is determined from: 
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15. SIMULATION RESULTS 
 

Time-domain simulations have been conducted using the synchronous 
generator model developed in this paper. Parameters from a real hydroelectric 
power unit in HPP Dubrava (42 MVA) are used in the simulations. Parameters are 
shown in Table I. 

Table I: Generator parameters of HPP Dubrava 

d-axis synchronous reactance xd (p.u.) 1.346 

q-axis synchronous reactance xq (p.u.) 0.940 

d-axis transient reactance xd′ (p.u.) 0.446 

d-axis subtransient reactance xd″(p.u.) 0.330 

q-axis subtransient reactance xq″(p.u.) 0.370 

Stator leakage reactance xl (p.u.) 0.243 

d-axis open-circuit transient time constant Td 0′ (s) 1.660 

d-axis open-circuit subtransient time constant Td 0″ (s) 0.118 

q-axis open-circuit subtransient time constant Tq 0″ (s) 0.035 

Stator resistance r (p.u.) 0.006 

Inertia constant H (s) 1.2 

Three-phase short-circuit fault at the infinite bus has been simulated as a 
typical example for different initial conditions. 

Current and voltages responses in figure 13 are simulation results for 
following initial conditions: 

 generator active power P = 0,75 (p.u.) 

 generator reactive power Q = 0,25 (p.u.) 

 generator terminal voltage V = 1 (p.u.) . 

Simulations have been also made for different fault durations. 

Figure 14 show load angle responses for fault durations of 0.1 s and for fault 
durations equal to and larger than critical clearing time which is 0.165 s for given 
scenario. 

Model is verified comparing simulated and measured values. Responses of 
HPP Dubrava generator A on three-phase short circuit in the neighbouring grid 
(HPP Varaždin) are shown in Figure 15. Simulated and measured responses agree 
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very well, and small differences are probably caused by model parameters which 
could be calibrated. 

  

  
Figure 13. Simulated results – currents and voltages responses (the short-

circuit is applied at 0.1 s and removed at 0.2 s) 

 
Figure 14. Load angle response for different fault duration (0.1, 0.165 and 0.17 s) 
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Figure 15. Simulated and measured responses comparison (the short-circuit is 

applied at 1 s and removed at 1.1 s) 

 

16. CONCLUSION 
 

Thanks to the modern digital simulation systems even the most complex 
mathematical models can be translated into adequate simulation models. Therefore, 
high-order models that provide the highest degree of accuracy (with respect to the 
existing theory) are used more and more for power system elements modelling 
instead of low-order simplified models for simulating power system operation. The 
presented mathematical and simulation model of a synchronous generator allows 
the analysis of all electrical and mechanical units during faults and in different 
time scales. As an example, in this paper, the generator response to a three-phase 
short-circuit fault at the infinite bus (most commonly used type of short-circuit fault 
in stability analysis) have been shown. With minor adjustments, other types of 
faults can be simulated as well. The change of initial conditions and parameters is 
simple so different responses can be simulated and compared in order to analyze 
the impact of different initial conditions and parameters on the dynamic response of 
a generator. The block diagram model can be easily integrated with other models 
(foremost, the excitation and voltage control system and turbine with turbine 
governor systems). 

Because of very high accuracy, the described model is used in Power System 
Laboratory at the Department of Energy and Power Systems, Faculty of Electrical 
Engineering and Computing, University of Zagreb to compare computer simulations 
with recorded dynamics of the generator after some switching operations [13]. 
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18. NOMENCLATURE 
 

E internal EMF induced by excitation current 
fR nominal frequency (Hz) 
H inertia constant (s) 
ia ib ic generator armature current - phases a, b, c 
i0 id iq generator current - 0, d, q system 
iF iD iQ field winding current, d and q axis damper winding current 
I generator RMS current 
Ir Ix active and reactive component of generator current 
Id Iq d and q axis generator current 
IF excitation current 
J moment of inertia (kg⋅m2) 
k mutual inductance coefficient 
L0 Ld Lq stator winding inductance - 0, d, q system 
LF LD LQ field winding inductance, d and q axis damper winding inductance 
Ln generator neutral point grounding inductance 
Ld′ Lq′ d and q axis transient inductance 
Lq″ q-axis subtransient inductance 
ld lq stator winding leakage inductance – d, q components 
lF lD lQ field winding leakage inductance, d and q axis damper winding 

leakage inductance 
LAD LAQ d and q axis winding magnetizing inductance 
LMD LMQ d and q axis equivalent inductances 
Le equivalent inductance between the generator and the infinite bus 
MF MD MQ armature winding and field winding mutual inductance, d and q axis 

damper winding mutual inductance 
MR field winding and d-axis damper circuit mutual inductance 
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Me electrical torque 
Mm mechanical torque 
p number of pole pairs 
Pe electrical power 
Pm mechanical power 
P (initial) generator active power 
Q (initial) generator reactive power 
r armature winding resistance 
rF rD rQ field winding resistance, d and q axis damper winding resistance 
rn generator neutral point grounding resistance 
Re equivalent resistance between the generator and the infinite bus 
Sn generator nominal apparent power (kVA) 
t time (s) 
Td0′ Tq0′ d and q axis open-circuit transient time constant (s) 
Td0 ″ d-axis open-circuit subtransient time constant (s) 
Td′ Tq′ d and q axis short-circuit transient time constant (s) 
Td ″ d-axis short-circuit subtransient time constant (s) 
va vb vc generator terminal voltage - phases a, b, c 
v0 vd vq generator terminal voltage – 0, d, q system 
vF vD vQ field winding voltage, d and q axis damper winding voltage 
vn generator neutral point voltage 
v∞a v∞b v∞c infinite bus voltage - phases a, b, c 
V∞ infinite bus RMS voltage 
V generator RMS voltage 
Vd Vq d and q axis generator voltage 
xd xq d and q axis synchronous reactance 
Xe equivalent reactance between the generator and the infinite bus 
Ze equivalent impedance between the generator and the infinite bus 
α infinite bus voltage phase shift (rad) 
β infinite bus voltage and generator voltage phase shift (rad) 
δ q-axis phase shift with respect to the reference axis; load angle (rad) 
φ Phase shift between generator voltage and generator current (rad) 
ψa ψb ψc stator winding flux linkages - phases a, b, c 
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ψ0 ψd ψq stator winding flux linkages - 0, d, q system 
ψF ψD ψQ field winding flux linkage, d and q axis damper winding flux linkage 
ψAD ψAQ d and q axis mutual inductance flux linkages 
ϑ instantaneous generator voltage angle (rad) 
ω angular frequency (rad/s) 
ωm mechanical angular frequency (rad/s) 
ωR nominal (synchronous) angular frequency (rad/s) 
 

All magnitudes for which no units have been specified are expressed in per-unit 
unless specified otherwise in the text. 
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